简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据

Receiver

使用Kafka的高层次Consumer API来实现。receiver从Kafka中获取的数据都存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据。然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

注意事项:

1、Kafka中topic的partition与Spark中RDD的partition是没有关系的,因此,在KafkaUtils.createStream()中,提高partition的数量,只会增加Receiver的数量,也就是读取Kafka中topic partition的线程数量,不会增加Spark处理数据的并行度。

2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。

3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER。

Direct

Spark1.3中引入Direct方式,用来替代掉使用Receiver接收数据,这种方式会周期性地查询Kafka,获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。

这种方式有如下优点:

1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream,然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。

2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。

3、一次且仅一次的事务机制:基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。由于数据消费偏移量是保存在checkpoint中,因此,如果后续想使用kafka高级API消费数据,需要手动的更新zookeeper中的偏移量

Direct代码

package bigdata.spark

import kafka.serializer.{StringDecoder, Decoder}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkContext, SparkConf} import scala.reflect.ClassTag /**
* Created by Administrator on 2017/4/28.
*/
object SparkStreamDemo {
def main(args: Array[String]) { val conf = new SparkConf()
conf.setAppName("spark_streaming")
conf.setMaster("local[*]") val sc = new SparkContext(conf)
sc.setCheckpointDir("D:/checkpoints")
sc.setLogLevel("ERROR") val ssc = new StreamingContext(sc, Seconds(5)) // val topics = Map("spark" -> 2) val kafkaParams = Map[String, String](
"bootstrap.servers" -> "m1:9092,m2:9092,m3:9092",
"group.id" -> "spark",
"auto.offset.reset" -> "smallest"
)
// 直连方式拉取数据,这种方式不会修改数据的偏移量,需要手动的更新
val lines = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, Set("spark")).map(_._2)
// val lines = KafkaUtils.createStream(ssc, "m1:2181,m2:2181,m3:2181", "spark", topics).map(_._2) val ds1 = lines.flatMap(_.split(" ")).map((_, 1)) val ds2 = ds1.updateStateByKey[Int]((x:Seq[Int], y:Option[Int]) => {
Some(x.sum + y.getOrElse(0))
}) ds2.print() ssc.start()
ssc.awaitTermination() }
}

  

Spark-Streaming获取kafka数据的两种方式:Receiver与Direct的方式的更多相关文章

  1. SparkStreaming获取kafka数据的两种方式:Receiver与Direct

    简介: Spark-Streaming获取kafka数据的两种方式-Receiver与Direct的方式,可以简单理解成: Receiver方式是通过zookeeper来连接kafka队列, Dire ...

  2. spark streaming 接收kafka消息之一 -- 两种接收方式

    源码分析的spark版本是1.6. 首先,先看一下 org.apache.spark.streaming.dstream.InputDStream 的 类说明: This is the abstrac ...

  3. spark-streaming获取kafka数据的两种方式

    简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据 一.Receiver方式: 使用kafka的高层次Consumer ...

  4. 工具篇-Spark-Streaming获取kafka数据的两种方式(转载)

    转载自:https://blog.csdn.net/weixin_41615494/article/details/7952173 一.基于Receiver的方式 原理 Receiver从Kafka中 ...

  5. SparkStreaming与Kafka,SparkStreaming接收Kafka数据的两种方式

    SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreami ...

  6. Spark Streaming中空batches处理的两种方法(转)

    原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),S ...

  7. Spark Streaming接收Kafka数据存储到Hbase

    Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712 ...

  8. demo1 spark streaming 接收 kafka 数据java代码WordCount示例

    1. 首先启动zookeeper windows上的安装见zk 02之 Windows安装和使用zookeeper 启动后见: 2. 启动kafka windows的安装kafka见Windows上搭 ...

  9. iOS 通过URL网络获取XML数据的两种方式

    转载于:http://blog.csdn.net/crayondeng/article/details/8738768 下面简单介绍如何通过url获取xml的两种方式. 第一种方式相对简单,使用NSD ...

随机推荐

  1. docker-compose安装xxl-job

    docker能安装的docker-compose肯定就能安装,锻炼一下写yml的能力. 后面再具体写实际中的应用 [root@localhost mysql]# cat docker-compose. ...

  2. 【CodeChef】LECOINS(同余最短路,背包DP)

    题意:给定n个物品,每个物品可以取无限次,每个物品有两种属性:价值v和颜色c 现在有q个询问,每次询问是否能取出价值和为S的方案,如有多解输出不同颜色种数的最大值 题意:看到BZOJ评论区有好心人说C ...

  3. Spring Boot教程(二十三)使用Swagger2构建强大的RESTful API文档(2)

    添加文档内容 在完成了上述配置后,其实已经可以生产文档内容,但是这样的文档主要针对请求本身,而描述主要来源于函数等命名产生,对用户并不友好,我们通常需要自己增加一些说明来丰富文档内容.如下所示,我们通 ...

  4. Jmeter -- 参数化(函数助手和CSV数据文件配置)

    使用场景: 例如:模拟多用户登陆时 参数化两种方式: 方式一:使用函数助手 1. 创建包含多个登录名和密码的文件 可以在文本编辑器中输入,格式如下: username,passwordusername ...

  5. pymysql 处理数据的几种方式

    1.表中提取数据 sql = "SELECT * FROM table WHERE name='%s'AND time='%s'" % (name,time)多个选择条件用AND连 ...

  6. 《Effective Java》读书笔记 - 11.序列化

    Chapter 11 Serialization Item 74: Implement Serializable judiciously 让一个类的实例可以被序列化不仅仅是在类的声明中加上" ...

  7. Chrome 抓包:快速定位HTTP协议问题

    标签(空格分隔): 快速定位HTTP协议问题 Chrome:快速定位HTTP协议问题 快捷键:control+shift+i(windows),command+option+i(mac) 控制器: 控 ...

  8. mysql 优化之索引的使用

    mysql 优化之索引的使用 1:MySQL 索引简介: MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 打个比方,如果合理的设计且使用索引的MySQL ...

  9. 十八、RF中selenium2library构造函数中参数解释

    def __init__(self,                  timeout=5.0,                  implicit_wait=0.0,                 ...

  10. 五、RF中UI自动化操作基础

    列表分类 1.打开浏览器 Open Browser   url   browser [ url | browser=firefox | alias=None | remote_url=False | ...