题目链接

读完题后,我们发现如下性质:

  • 在合法且和不超过 $m$ 的情况下,如果 $a_{i}$ 出现,则 $a_{i}$ 的倍数也必出现.
  • 所以如果合法,只要对所有数两两结合一次就能得到所有 $a_{i}$ 能凑出的不超过 $m$ 的数,且没有多余的.

那么做法就出来了:

  • 只需对 $a_{1}...a_{n}$ 两两结合,如果发现一个新的数被凑出来,而这个数在 $a_{1}...a_{n}$ 没出现过,那么就输出无解,否则,就找出那些不能被两两结合出来的 $a_{i}$,输出即可

对于两两结合的部分,用生成函树 + FFT 加速,记住 $0$ 次项的系数为 $0$

#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 4000000
#define ll long long
using namespace std;
const double pi=acos(-1.0);
struct cpx
{
double x,y;
cpx(double a=0,double b=0) {x=a,y=b; }
cpx operator+(const cpx b) { return cpx(x+b.x,y+b.y); }
cpx operator-(const cpx b) { return cpx(x-b.x,y-b.y); }
cpx operator*(const cpx b) { return cpx(x*b.x-y*b.y,x*b.y+y*b.x); }
}A[maxn];
void FFT(cpx *a,int n,int flag)
{
for(int i=0,k=0;i<n;++i)
{
if(i>k) swap(a[i],a[k]);
for(int j=n>>1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<n;mid<<=1)
{
cpx wn(cos(pi/mid), flag*sin(pi/mid)),x,y;
for(int i=0;i<n;i+=(mid<<1))
{
cpx w(1,0);
for(int j=0;j<mid;++j)
{
x=a[i+j],y=w*a[i+j+mid];
a[i+j]=x+y,a[i+j+mid]=x-y;
w=w*wn;
}
}
}
if(flag==-1) for(int i=0;i<n;++i) a[i].x/=(double)n;
}
int ans[maxn],arr[maxn],bu[maxn];
int main()
{
// setIO("input");
int n,m,len;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d",&arr[i]);
for(int i=1;i<=n;++i) bu[arr[i]]++,ans[arr[i]]++;
for(int i=1;i<=m;++i) if(bu[i]) A[i].x=1;
for(len=1;len<=(m<<1);len<<=1);
FFT(A,len,1);
for(int i=0;i<len;++i) A[i]=A[i]*A[i];
FFT(A,len,-1);
for(int i=1;i<=m;++i)
{
if((ll)(A[i].x+0.5)>=1)
{
if(!bu[i]) { printf("NO\n"); return 0; }
ans[i]=0;
}
}
printf("YES\n");
int sum=0;
for(int i=1;i<=m;++i) if(ans[i]) ++sum;
printf("%d\n",sum);
for(int i=1;i<=m;++i) if(ans[i]) printf("%d ",i);
return 0;
}

  

CF286E Ladies' Shop FFT的更多相关文章

  1. [CF286E] Ladies' shop

    Description 给出 \(n\) 个 \(\leq m\) 且不同的数 \(a_1,\dots,a_n\),现在要求从这 \(n\) 个数中选出最少的数字,满足这 \(n\) 个数字都可以由选 ...

  2. codeforces 286 E. Ladies' Shop (FFT)

    E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...

  3. CodeForces 286E Ladies' Shop 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...

  4. Codeforces 286E - Ladies' Shop(FFT)

    Codeforces 题面传送门 & 洛谷题面传送门 好久没刷过 FFT/NTT 的题了,写篇题解罢( 首先考虑什么样的集合 \(T\) 符合条件.我们考察一个 \(x\in S\),根据题意 ...

  5. codeforces 632E. Thief in a Shop fft

    题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...

  6. codeforces 286E Ladies' Shop

    题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...

  7. CodeForces - 632E Thief in a Shop (FFT+记忆化搜索)

    题意:有N种物品,每种物品有价值\(a_i\),每种物品可选任意多个,求拿k件物品,可能损失的价值分别为多少. 分析:相当于求\((a_1+a_2+...+a_n)^k\)中,有哪些项的系数不为0.做 ...

  8. Ladies' Shop

    题意: 有 $n$ 个包,设计最少的物品体积(可重集),使得 1. 对于任意一个总体积不超过给定 $m$ 的物体集合有其体积和 恰好等于一个包的容量. 2.对于每一个包,存在一个物品集合能恰好装满它. ...

  9. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

随机推荐

  1. nacos 使用 servlet 异步处理客户端配置长轮询

    config 客户端 ClientWorker#ClientWorker 构造方法中启动定时任务 ClientWorker.LongPollingRunnable 长轮询的任务,在 run 方法的结尾 ...

  2. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第4节 ArrayList集合_16-ArrayList练习一_存储随机数

    循环6次就是6.fori 循环子在外部+1就是得到的1到33的数字 list.fori遍历集合 自动生for循环的代码

  3. 测开之路八十九:HTML之图片处理

    <!--width.height设置图片尺寸 alt:当图片不能展示时,显示的内容 title:鼠标放上去时展示的内容--> <img src="../imges/img0 ...

  4. 【ABAP系列】SAP 关于出口(user-exit)MV50AFZ1的一些问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP 关于出口(user-ex ...

  5. ElasticSearch 基础 2

    ================================== 高级查询 =========================== ========== 子条件查询 =========== _sc ...

  6. 洛谷 P1525 关押罪犯 & [NOIP2010提高组](贪心,种类并查集)

    传送门 解题思路 很显然,为了让最大值最小,肯定就是从大到小枚举,让他们分在两个监狱中,第一个不符合的就是答案. 怎样判断是否在一个监狱中呢? 很显然,就是用种类并查集. 种类并查集的讲解——团伙(很 ...

  7. 偏序问题及CDQ分治详解

    CDQ用来解决分治时左半部分对右半部分造成影响的问题. CDQ分治的经典问题是三维偏序问题. 要想解决三维偏序问题,首先你要知道什么是偏序.(废话) 一维偏序: 给出直线上的n个点,问有多少对点满足x ...

  8. <meta>标签中http-equiv属性的属性值X-UA-Compatible详解

    X-UA-Compatible是针对IE8新加的一个设置,对于IE8之外的浏览器是不识别的,这个区别与content="IE=7"在无论页面是否包含<!DOCTYPE> ...

  9. 不定参数(rest 参数 ...)

    不定参数 如何实现不定参数 使用过 underscore.js 的人,肯定都使用过以下几个方法: _.without(array, *values) //返回一个删除所有values值后的array副 ...

  10. 面向切面编程 AOP 和装饰器??

    1.AOP概念:面向切面编程,指扩展功能不修改源代码,将功能代码从业务逻辑代码中分离出来. 主要功能:日志记录,性能统计,安全控制,事务处理,异常处理等等. 主要意图:将日志记录,性能统计,安全控制, ...