JVM内存管理------GC算法精解(复制算法与标记/整理算法)
本次LZ和各位分享GC最后两种算法,复制算法以及标记/整理算法。上一章在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢?
复制算法
我们首先一起来看一下复制算法的做法,复制算法将内存划分为两个区间,在任意时间点,所有动态分配的对象都只能分配在其中一个区间(称为活动区间),而另外一个区间(称为空闲区间)则是空闲的。
当有效内存空间耗尽时,JVM将暂停程序运行,开启复制算法GC线程。接下来GC线程会将活动区间内的存活对象,全部复制到空闲区间,且严格按照内存地址依次排列,与此同时,GC线程将更新存活对象的内存引用地址指向新的内存地址。
此时,空闲区间已经与活动区间交换,而垃圾对象现在已经全部留在了原来的活动区间,也就是现在的空闲区间。事实上,在活动区间转换为空间区间的同时,垃圾对象已经被一次性全部回收。
听起来复杂吗?
其实一点也不复杂,有了上一章的基础,相信各位理解这个算法不会费太多力气。LZ给各位绘制一幅图来说明问题,如下所示。

其实这个图依然是上一章的例子,只不过此时内存被复制算法分成了两部分,下面我们看下当复制算法的GC线程处理之后,两个区域会变成什么样子,如下所示。

可以看到,1和4号对象被清除了,而2、3、5、6号对象则是规则的排列在刚才的空闲区间,也就是现在的活动区间之内。此时左半部分已经变成了空闲区间,不难想象,在下一次GC之后,左边将会再次变成活动区间。
很明显,复制算法弥补了标记/清除算法中,内存布局混乱的缺点。不过与此同时,它的缺点也是相当明显的。
1、它浪费了一半的内存,这太要命了。
2、如果对象的存活率很高,我们可以极端一点,假设是100%存活,那么我们需要将所有对象都复制一遍,并将所有引用地址重置一遍。复制这一工作所花费的时间,在对象存活率达到一定程度时,将会变的不可忽视。
所以从以上描述不难看出,复制算法要想使用,最起码对象的存活率要非常低才行,而且最重要的是,我们必须要克服50%内存的浪费。
标记/整理算法
标记/整理算法与标记/清除算法非常相似,它也是分为两个阶段:标记和整理。下面LZ给各位介绍一下这两个阶段都做了什么。
标记:它的第一个阶段与标记/清除算法是一模一样的,均是遍历GC Roots,然后将存活的对象标记。
整理:移动所有存活的对象,且按照内存地址次序依次排列,然后将末端内存地址以后的内存全部回收。因此,第二阶段才称为整理阶段。
它GC前后的图示与复制算法的图非常相似,只不过没有了活动区间和空闲区间的区别,而过程又与标记/清除算法非常相似,我们来看GC前内存中对象的状态与布局,如下图所示。

这张图其实与标记/清楚算法一模一样,只是LZ为了方便表示内存规则的连续排列,加了一个矩形表示内存区域。倘若此时GC线程开始工作,那么紧接着开始的就是标记阶段了。此阶段与标记/清除算法的标记阶段是一样一样的,我们看标记阶段过后对象的状态,如下图。

没什么可解释的,接下来,便应该是整理阶段了。我们来看当整理阶段处理完以后,内存的布局是如何的,如下图。

可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。
不难看出,标记/整理算法不仅可以弥补标记/清除算法当中,内存区域分散的缺点,也消除了复制算法当中,内存减半的高额代价,可谓是一举两得,一箭双雕,一石两鸟,一。。。。一女两男?
不过任何算法都会有其缺点,标记/整理算法唯一的缺点就是效率也不高,不仅要标记所有存活对象,还要整理所有存活对象的引用地址。从效率上来说,标记/整理算法要低于复制算法。
算法总结
这里LZ给各位总结一下三个算法的共同点以及它们各自的优势劣势,让各位对比一下,想必会更加清晰。
它们的共同点主要有以下两点。
1、三个算法都基于根搜索算法去判断一个对象是否应该被回收,而支撑根搜索算法可以正常工作的理论依据,就是语法中变量作用域的相关内容。因此,要想防止内存泄露,最根本的办法就是掌握好变量作用域,而不应该使用前面内存管理杂谈一章中所提到的C/C++式内存管理方式。
2、在GC线程开启时,或者说GC过程开始时,它们都要暂停应用程序(stop the world)。
它们的区别LZ按照下面几点来给各位展示。(>表示前者要优于后者,=表示两者效果一样)
效率:复制算法>标记/整理算法>标记/清除算法(此处的效率只是简单的对比时间复杂度,实际情况不一定如此)。
内存整齐度:复制算法=标记/整理算法>标记/清除算法。
内存利用率:标记/整理算法=标记/清除算法>复制算法。
可以看到标记/清除算法是比较落后的算法了,但是后两种算法却是在此基础上建立的,俗话说“吃水不忘挖井人”,因此各位也莫要忘记了标记/清除这一算法前辈。而且,在某些时候,标记/清除也会有用武之地。
结束语
到此我们已经将三个算法了解清楚了,可以看出,效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存,而为了尽量兼顾上面所提到的三个指标,标记/整理算法相对来说更平滑一些,但效率上依然不尽如人意,它比复制算法多了一个标记的阶段,又比标记/清除多了一个整理内存的过程。
难道就没有一种最优算法吗?
当然是没有的,这个世界是公平的,任何东西都有两面性,试想一下,你怎么可能找到一个又漂亮又勤快又有钱又通情达理,性格又合适,家境也合适,身高长相等等等等都合适的女人?就算你找到了,至少有一点这个女人也肯定不满足,那就是多半不会恰巧又爱上了与LZ相似的各位苦逼猿友们。你是不是想说你比LZ强太多了,那LZ只想对你说,高富帅是不会爬在电脑前看技术文章的,0.0。
但是古人就是给力,古人说了,找媳妇不一定要找最好的,而是要找最合适的,听完这句话,瞬间感觉世界美好了许多。
算法也是一样的,没有最好的算法,只有最合适的算法。
既然这三种算法都各有缺陷,高人们自然不会容许这种情况发生。因此,高人们提出可以根据对象的不同特性,使用不同的算法处理,类似于萝卜白菜各有所爱的原理。于是奇迹发生了,高人们终于找到了GC算法中的神级算法-----分代搜集算法。
至于这个神级算法是如何处理的,LZ就在下一章再和各位猿友探讨了,本次就到此为止了,希望各位有所收获。
JVM内存管理------GC算法精解(复制算法与标记/整理算法)的更多相关文章
- JVM内存管理--GC算法详解
标记/清除算法 首先,我们回想一下上一章提到的根搜索算法,它可以解决我们应该回收哪些对象的问题,但是它显然还不能承担垃圾搜集的重任,因为我们在程序(程序也就是指我们运行在JVM上的JAVA程序)运行期 ...
- JVM内存管理------GC算法精解(五分钟教你终极算法---分代搜集算法)
引言 何为终极算法? 其实就是现在的JVM采用的算法,并非真正的终极.说不定若干年以后,还会有新的终极算法,而且几乎是一定会有,因为LZ相信高人们的能力. 那么分代搜集算法是怎么处理GC的呢? 对象分 ...
- java jvm内存管理/gc策略/参数设置
1. JVM内存管理:深入垃圾收集器与内存分配策略 http://www.iteye.com/topic/802638 Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想 ...
- JVM内存管理 + GC垃圾回收机制
2.JVM内存管理 JVM将内存划分为6个部分:PC寄存器(也叫程序计数器).虚拟机栈.堆.方法区.运行时常量池.本地方法栈 PC寄存器(程序计数器):用于记录当前线程运行时的位置,每一个线程都有一个 ...
- JVM内存管理------GC简介
为何要了解GC策略与原理? 原因在上一章其实已经有所触及,就是因为在平时的工作和研究当中,不可避免的会遇到内存溢出与内存泄露的问题.如果对GC策略与原理不了解的情况下碰到了前面所说的问题,很多时候会让 ...
- JVM内存管理面试常见问题全解
目录 一.什么是JVM 1.jvm的三个组成部分 二.类加载系统 1.类的加载过程 2.类加载器 三.双亲委派机制 1.双亲委派机制介绍 2.为什么要双亲委派机制 3.双亲委派机制的核心源码 4.全盘 ...
- JVM内存管理------GC算法精解(五分钟让你彻底明白标记/清除算法)
相信不少猿友看到标题就认为LZ是标题党了,不过既然您已经被LZ忽悠进来了,那就好好的享受一顿算法大餐吧.不过LZ丑话说前面哦,这篇文章应该能让各位彻底理解标记/清除算法,不过倘若各位猿友不能在五分钟内 ...
- JVM内存管理&GC
一.JVM内存划分 |--------------------|-------------PC寄存器-------| |----方法区 ---------|--------------java 虚拟机 ...
- JVM内存管理之GC算法精解(复制算法与标记/整理算法)
本次LZ和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一章在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算 ...
随机推荐
- One to One 的数据库模型设计与NHibernate配置
在数据库模型设计中,最基本的实体关系有三种:一对一.一对多.多对多.关于一对多和多对多使用的情况较多,之前也有过一些讨论,现在来说明一下在数据库中一对一的模型设计. 首先,关系数据库中使用外键来表示一 ...
- eclipse插件Maven添加依赖查询无结果的解决方法(Select Dependency doesn't work)
在eclipse中用过maven的可能都遇到过这种情况,我以前一直在search.maven里面搜索,然后添加pom信息. 今天在网上搜索时,找到了一个解决方法,在这里分享一下. 第一步,在prefe ...
- Redis安装和配置
1.下载安装redis 在linux服务器上,命令行执行以下命令(cd ./usr local/src 一般源码放在这里(推荐源码安装)) wget http://download.redis.io/ ...
- 二:shell之bash变量
1.变量的分类: 用户自定义变量: 变量自定义 默认存储是字符串环境变量: 这种变量中主要保存的是和系统操作环境相关的数据.变量可以自定义,但是对系统生效的环境变量名和变 ...
- CoCreateInstance调用COM接口伪流程
在编写组件程序时,经常会使用CoCreateInstance直接取COM组件的接口,非常方便,那CoCreateInstance到底干了些什么事呢?1.CoCreateInstance取COM组件的接 ...
- MyBatis使用总结+整合Spring
MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis .20 ...
- Android 之窗口小部件详解--App Widget
Android 之窗口小部件详解--App Widget 版本号 说明 作者 日期 1.0 添加App Widge介绍和示例 Sky Wang 2013/06/27 1 App ...
- Netty系列之Netty 服务端创建
1. 背景 1.1. 原生NIO类库的复杂性 在开始本文之前,我先讲一件自己亲身经历的事:大约在2011年的时候,周边的两个业务团队同时进行新版本开发,他们都需要基于NIO非阻塞特性构建高性能.异步和 ...
- hibernate考试题
1.在Hibernate中,以下关于主键生成器说法错误的是(C). A.increment可以用于类型为long.short或byte的主键 long,short,byte都是特殊的int类型 B.i ...
- luogu[1135]奇怪的电梯
题目描述 呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯.大楼的每一层楼都可以停电梯,而且第i层楼(1<=i<=N)上有一个数字Ki(0<=Ki<=N).电梯只有四个按钮:开 ...