题目链接http://poj.org/problem?id=2456

题目大意:n个房子,m头牛,房子有一个横坐标,问将m头牛塞进房子,每两头牛之间的最大间隔是多少。

解题思路

不难看出应该二分房子间隔,找一个最大的可行间隔。

首先将房子坐标排序,这样只需从第1个房子开始塞牛就行了,且第一个房子肯定得塞一只牛,才能保证空间的有效利用。

这样,每次对于一个间隔,从第一个房子开始塞牛:

①如果上一个房子坐标last+间隔<=h[i],那么这个房子肯定得塞牛,才能有效利用空间,更新last,cnt++。

②否则不能塞牛,去下一个房子。

这样,只要最后cnt>=m,这个间隔就是可行的。

关键在于确定二分的边界,左边界l可以确定是排序之后相邻两个房子的差的最小值。这也是可以尝试的最小间隔。

我一开SB地认为右边界就是两个相邻两个房子差的最大值。其实不对,因为牛之间可以隔好多房子。其实r=h[n]-h[1]/(m-1)

如果你比较机智而且又懒,其实l=0,r=h[i]就行了,反正范围大点也不会超时orz。

以后确定范围直接脑残0~最大好了。

#include "cstdio"
#include "algorithm"
using namespace std;
int h[],n,m,ans;
bool check(int dist)
{
int cnt=,last=h[];
for(int i=;i<=n;i++) if(last+dist<=h[i]) {last=h[i];cnt++;}
if(cnt>=m) return true;
else return false;
}
int main()
{
//freopen("in.txt","r",stdin);
int l=0x3f3f3f3f,r=-;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&h[i]);
sort(h+,h+n+);
for(int i=;i<=n;i++) l=min(l,h[i]-h[i-]);
r=(h[n]-h[])/(m-);
while(l<=r)
{
int mid=l+(r-l)/;
if(check(mid)) {ans=mid;l=mid+;}
else r=mid-;
}
printf("%d\n",ans);
}
13591899 neopenx 2456 Accepted 548K 110MS C++ 661B 2014-11-02 19:22:27

POJ 2456 (二分)的更多相关文章

  1. poj 2456 Aggressive cows && nyoj 疯牛 最大化最小值 二分

    poj 2456 Aggressive cows && nyoj 疯牛 最大化最小值 二分 题目链接: nyoj : http://acm.nyist.net/JudgeOnline/ ...

  2. POJ 2456 Agressive cows(二分)

    POJ 2456 Agressive cows 农夫 John 建造了一座很长的畜栏,它包括N (2≤N≤100,000)个隔间,这 些小隔间的位置为x0,...,xN-1 (0≤xi≤1,000,0 ...

  3. POJ 2456 Aggressive cows (二分)

    题目传送门 POJ 2456 Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) s ...

  4. POJ 2456 3258 3273 3104 3045(二分搜索-最大化最小值)

    POJ 2456 题意 农夫约翰有N间牛舍排在一条直线上,第i号牛舍在xi的位置,其中有C头牛对牛舍不满意,因此经常相互攻击.需要将这C头牛放在离其他牛尽可能远的牛舍,也就是求最大化最近两头牛之间的距 ...

  5. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

  6. POJ 2456 Aggressive cows---二分搜索法

    ///3.最大化最小值 /** POJ 2456 Aggressive cows Q:一排牛舍有N (2 <= N <= 100,000) 个,位置为x1,...,xN (0 <= ...

  7. 二分搜索 POJ 2456 Aggressive cows

    题目传送门 /* 二分搜索:搜索安排最近牛的距离不小于d */ #include <cstdio> #include <algorithm> #include <cmat ...

  8. [POJ] 2456 Aggressive cows (二分查找)

    题目地址:http://poj.org/problem?id=2456 最大化最小值问题.二分牛之间的间距,然后验证. #include<cstdio> #include<iostr ...

  9. [poj 2456] Aggressive cows 二分

    Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stal ...

随机推荐

  1. Quartus 11.0 的AS 下载方式和JTAG下载jic文件的方式

    FPGA下载的三种方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式: AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EP ...

  2. mysql中select五种子句和统计函数

    select 五种子句顺序 where 条件 group by 分组 having 把结果进行再次筛选 order by  排序 limit  取出条目 统计函数  max(列名)  求最大 min( ...

  3. Loadrunner上传与下载文件脚本

    一. 上传脚本 Action() { int uploadImgStatus = 0; //获取上传产品图ID web_reg_save_param_ex("ParamName=imgRan ...

  4. 开发一款完备的android应用所必备的知识

    原文:http://blog.csdn.net/xyz_lmn/article/details/17575709

  5. 在ubuntu上搭建开发环境6---安装和使用vim及其插件(Pathogen和NERDTree)

    2015.09.08 更为详细的配置vim的方法,请参见我的新整理的文章:http://segmentfault.com/a/1190000003722928 Vim安装 命令: sudo apt-g ...

  6. 【翻译二十二】java-并发之集合与原子变量

    Concurrent Collections The java.util.concurrent package includes a number of additions to the Java C ...

  7. javascript中求浏览器窗口可视区域兼容性写法

    1.浏览器窗口可视区域大小 1.1 对于IE9+.Chrome.Firefox.Opera 以及 Safari:•  window.innerHeight - 浏览器窗口的内部高度•  window. ...

  8. spring 集成 log4j 配置

    在web.xml中增加如下代码: <context-param> <param-name>log4jConfigLocation</param-name> < ...

  9. cmder

    添加cmder到右键菜单 Cmder.exe /REGISTER ALL 打开配置快捷键 win+alt+p 文字重叠 main->font->去掉monospace的勾 λ符号修改 找到 ...

  10. .NET Expression Tree

    Expression Tree 第一个简单的例子. [TestMethod] public void GodTest() { Expression<Func<int, int, int&g ...