BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1317 Solved: 504
[Submit][Status][Discuss]
Description
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Input
输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。
Output
输出一个整数,表示有多少b可以使等式存在非负整数解。
Sample Input
3 5
Sample Output
HINT
对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。
- 首先,答案=ans(Bmax)-ans(Bmin-1)
- 找出a1到an中的最小值p,则如果可以构造出答案x,就可以构造出答案x+p
- 所以我们只需要对于每个b(0<=b<p),计算出最小的k,使k*p+b能够能够被构造出来,那么对于k’(k’>k) k’*p+b也能构造出来
- 所以对于每个b建一个点,对于每个ai,从b向(b+ai)%p连一条长度为ai的边
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
const ll N=*1e5+,INF=1e19;
ll n;
ll p=INF,a[];;
ll bmx,bmn,ans=;
struct edge{
ll v,w,ne;
}e[N*];
ll h[N],cnt=;
void ins(ll u,ll v,ll w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
//cnt++;
//e[cnt].v=u;e[cnt].w=w;e[cnt].ne=h[v];h[v]=cnt;
}
void buildGraph(){
for(ll i=;i<p;i++)
for(ll j=;j<=n;j++){
if(a[j]==p) continue;
ins(i,(i+a[j])%p,a[j]);
//prllf("ins %d %lld %lld\n",i,(i+a[j])%p,a[j]);
}
} struct hn{
ll u,d;
bool operator <(const hn &rhs)const{return d>rhs.d;}
};
ll d[N];
bool done[N];
priority_queue<hn> q;
void dijkstra(ll s){
for(ll i=;i<p;i++) d[i]=INF;
d[s]=;q.push((hn){s,});
while(!q.empty()){
hn x=q.top();q.pop();
ll u=x.u;
if(done[u]) continue;
done[u]=;
for(ll i=h[u];i;i=e[i].ne){
ll v=e[i].v;
if(d[v]>d[u]+e[i].w){
d[v]=d[u]+e[i].w;
q.push((hn){v,d[v]});
}
}
}
}
int main() {
scanf("%lld%lld%lld",&n,&bmn,&bmx);
for(ll i=;i<=n;i++) scanf("%lld",&a[i]),p=min(p,a[i]);
buildGraph();
dijkstra();
for(ll i=;i<p;i++){
if(d[i]>bmx) continue;
ll l=max(0LL,(bmn-d[i])/p),r=(bmx-d[i])/p;
if(l*p+d[i]<bmn) l++;
ans+=r-l+;
}
printf("%lld",ans);
return ;
}
BZOJ2118墨墨的等式[数论 最短路建模]的更多相关文章
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118: 墨墨的等式(最短路构造/同余最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
随机推荐
- jQuery仿京东无限级菜单HoverTree
官方网址:http://keleyi.com/jq/hovertree/ 效果图: 看了上面效果图,你或许已经明白为什么是仿京东菜单.如果还不明白,请访问http://list.jd.com/list ...
- 从0开始学angularjs-笔记04
由于公司加班,刚到家不久,然而却毫无睡意,可能是老了吧--- 不废话了,没睡意那就做点有意义的事情吧,继续我们的angular学习之路,深夜博文,希望能造福大家! 这次我们来详细讲解angular的双 ...
- css笔记图
1.css3选择器 2.css3动画 3.flex 4.自适应 5.边距图
- easyUI 后台经典框架DEMO下载
采用easyui 1.2.6 + jquery 1.7.2 设计 有不明白的朋友加群或加我QQ (709047174) Jquery-EasyUi-demo点击我下载
- 浅谈float浮动
float大概是css3以前网页布局里最常用的一个属性了,经常看到一言不合就浮动的代码,就一起来深入挖掘一下这个一半天使一半魔鬼的属性吧. 本文是读张鑫旭大神慕课网float视频后的一些总结及一些拓展 ...
- 如何通过CSS3 实现响应式Web设计
如何通过CSS3 实现响应式Web设计: 分为三个步骤:(1)允许网页宽度自动调整.首先在页面头部中,我们需要加入这样一行:<meta name="viewport" con ...
- DEV控件:gridControl常用属性设置(转载)
特别长,先撸下来再说 1.隐藏最上面的GroupPanel gridView1.OptionsView.ShowGroupPanel=false; 2.得到当前选定记录某字段的值 sValue=T ...
- Double 数据保留两位小数一:五舍六入
package com; public class T2 { public static void main(String[] args) { System.out.println(calculate ...
- 窗口activity
android:theme="@style/FloatActivity" E:\day9\mobilesafe\res\values\style
- 模仿password输入框
function hiddenPass(event) { var password0 = document.getElementById("password0"); var pas ...