Spark之命令
Spark之命令
1.spark运行模式有4种:
a.local 多有用测试,
b. standalone:spark 集群模式,使用spark自己的调度方式。
c. Yarn: 对MapreduceV1升级的经典版本,支持spark。
d.Mesos:类似Yarn的资源调度框架,提供了有效的、跨分布式应用或框架的资源隔离和共享,可以运行hadoop、spark等框架
2.spark local 模式(shell )
Spark local模式(shell运行)
windows:
执行spark-shell.cmd Linux:
执行spark-shell 参数指定: • MASTER=local[4] ADD_JARS=code.jar ./spark-shell • MASTER=spark://host:port • 指定executor内存:export SPARK_MEM=25g
3. spark standalone 模式
Spark standalone加载数据(shell运行spark-shell) 读取本地文件:
var file = sc.textFile("/root/test.txt").collect 加载远程hdfs文件:
var files = sc.textFile("hdfs://192.168.2.2:8020/user/superman").collect
(读取hdfs数据时使用的还是inputFormat) standalone WordCount
sc.textFile("/root/test.txt").flatMap(_.split("\\t")).map(x=>(x,1)).reduceByKey(_+_).collect
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
Spark standalone保存结果集数据 保存数据到本地:
result.saveAsTextFile("/root/tmp") (tmp文件夹必须不存在) 保存数据到远程hdfs文件:
result.saveAsTextFile("hdfs://192.168.122.212:8020/user/superman/tmp")
(tmp文件夹必须不存在) 设置输出结果集文件数量:
result.repartition(1).saveAsTextFile 任务提交
spark-submit (推荐)
其它也可⾏,如sbt run, java -jar 等等
提交:spark on standalone spark-submit --class SsdTest /zzy/original-spark2-1.0-SNAPSHOT.jar hdfs://hadoop13:9000/hello hdfs://hadoop13:9000/out1.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
Spark on YARN
需要配置hadoop_conf_dir,hadoop_home
任务提交:
(standalone)spark-submit --class SsdTest /zzy/original-spark2-1.0-SNAPSHOT.jar hdfs://hadoop13:9000/hello hdfs://hadoop13:9000/out1.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
命令格式:
spark –submit –class path.your.class --master yarn-cluster [options] <app jar> [app options] spark-submit --class you.jar /
--master yarn-cluster\
--driver-memory 4g\
--executor-memory 2g\
--executor -cores 1\
lib\spark-examples*.jar\
10提交:on yarn
spark-submit --class classname inputyour.jar input your.text outpath spark-submit --class SaprkOnYarn original-spark2-1.0-SNAPSHOT.jar /hello out2(hadop默认是/usr/root文件夹).csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
4.RDD,可恢复分布式数据集,弹性分布式数据集
5.spark 对比mapreduce优势的总结
spark具有所有优点,并不是依靠一个人或者是一个团队的力量,而是站在巨人的肩膀上
1.依靠scala强有力的函数式变成
2.actor通信模式,akka做底层架构
3.MR架构思想
4.数据共享快,省去了mapreduce的shuffle过程中至少三次存入磁盘所带来的额外开销
5.spark的DAG(执行过程首先省城一张有向无环图)做的好,越靠近编译器,就性能越好,优化也更好。
6.任务使用线程启动并执行,比mapreduce使用进程执行任务要有很大优势
7.delay scheduling ---延迟执行
6.Spark Streaming
流失系统的特点:
1.低延迟。
2.高性能
3.分布式
4.可扩展。伴随着业务的发展,我们的数据量、计算量可能会越来越大,所以系统是可扩展的。
5.容错。这是分布式系统中通用问题。一个节点挂了不能影响应用。
对比storm
1.同一套系统,安装spark之后就一切都有了
2.spark 较强的容错能力,storm 使用较广,更稳定
3.storm是用Clojure语言去写的,它的很多扩展都是用java去写的
4.任务执行方面和storm 的区别是:
i.spark streaming 数据进来是一小段时间的RDD,数据进来之后切成一小块一小块进行处理
ii.storms是基于record形式来的,进来的是一个tuple,一条进来就处理一下
5.中间过程实质上就是spark引擎,只不过sparkstreaming 在spark之后引擎之上动了一点手脚:对进入spark引擎之前的数据进行了一个封装,方便进行基于时间片的小批量作业,交给spark 进行计算。
Spark之命令的更多相关文章
- spark提交命令 spark-submit 的参数 executor-memory、executor-cores、num-executors、spark.default.parallelism分析
转载:https://blog.csdn.net/zimiao552147572/article/details/96482120 nohup spark-submit --master yarn - ...
- spark执行命令 监控执行命令
#!/bin/bash #/usr/hdp/current/flume-server/bin/flume-ng agent -c conf/ -f /usr/hdp/current/flume-ser ...
- python操作Spark常用命令
1. 获取SparkSession spark = SparkSession.builder.config(conf = SparkConf()).getOrCreate() 2. 获取SparkCo ...
- Spark运行命令示例
local单机模式:结果xshell可见:./bin/spark-submit --class org.apache.spark.examples.SparkPi --master local[1] ...
- 集群提交spark任务命令
>>spark-submit --class WordCount DataMining.jar /dept_ana/part-00000 /dept_ana/output/wordCou ...
- spark 编译命令
mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package
- spark集群的简单测试和基础命令的使用
写此篇文章之前,已经搭建好spark集群并测试成功: spark集群搭建文章链接:http://www.cnblogs.com/mmzs/p/8193707.html 一.启动环境 由于每次都要启动, ...
- Ubuntu 14.04 LTS 安装 spark 1.6.0 (伪分布式)-26号开始
需要下载的软件: 1.hadoop-2.6.4.tar.gz 下载网址:http://hadoop.apache.org/releases.html 2.scala-2.11.7.tgz 下载网址:h ...
- 《深入理解Spark:核心思想与源码分析》(前言及第1章)
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...
随机推荐
- sql server 判空查询
SELECT * FROM tableName WHERE columnName IS NOT NULL --排除空值 SELECT * FROM tableName WHERE ISNULL(col ...
- Java synchronized指南
在多线程程序中,同步修饰符用来控制对临界区代码的访问.其中一种方式是用synchronized关键字来保证代码的线程安全性.在Java中,synchronized修饰的代码块或方法不会被多个线程并发访 ...
- 同样有缓冲区,为什么bufferedReader输入流不需要清空缓冲区?而bufferedWriter需要清空缓冲区呢?
当BufferedReader在读取文本文件时,会先尽量从文件中读入字符数据并置入缓冲区,而之后若使用read()方法,会先从缓冲区中进行读取, 如果缓冲区数据不足,才会再从文件中读取.清不清空Buf ...
- global--命名空间的使用(一些零散的js方法)
var GLOBAL = {}; GLOBAL.namespace = function (str) { var arr = str.split('.'), o = GLOBAL; for (var ...
- setInterval js
$('#start_scan').on('click',function(){ if(timer == undefined){ timer = setInterval(scan,1000) start ...
- hasClass addClass removeClass
//函数有class function hasClass(ele,cls){ return -1<(" "+ele.className+" ").inde ...
- json跨域
很有意思的两种连接 ,效果相同. 不同之处: aehyok({"result":"我是远程js带来的数据"}); <script type="t ...
- tomcat 无法加载js和css 等静态文件的问题
前段时间做了个网站,在本地tomcat测试都没有问题,但是部署到阿里云上之后,系统样式全没了.jsp等动态页面访问正常. 打开浏览器监控发现所有的css 和js 文件返回都是404 .直接访问单个的c ...
- virtualbox中centos系统配置nat+host only上网
以前一直使用的是virtualbox的桥接模式,桥接模式的特点: 虚拟机和宿主机处于同等地位,就像是一台真实主机一样存在于局域网中,可以分配到一个网络中独立的IP. 虚拟机和宿主机之间能够互访. 如果 ...
- apache struts 2 任意代码执行漏洞
漏洞检测地址:http://0day.websaas.cn 漏洞利用工具,如下: 漏洞利用,如下: step1 step2 step3 提权思路,如下: 1.开启虚拟终端,执行命令,但是,提示“连接被 ...