#1,个人理解

网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子。对于我个人来说,还有很多不明白的地方,所以理清下思路。

#2,边缘、边界和sobel算子

这个可以自己去google或者百度找定义,边缘边界不一样,两者没有必然联系也并非毫无联系。因为现实世界的三维空间映射到图像显示的二维空间中会丢失很多信息,也会添进来一部分类似光照、场景等的干扰,所以并不能完全给边缘和边界的关系下一个定义。对图像而言,我们一般是要找出它的边缘,因为这是图像处理中使用较多的一个特征。何为边缘?图像处理中认为,灰度值变化剧烈的地方就是边缘。那么如何判断灰度值变化?如何度量“剧烈”?sobel算子就对这些问题做了自己的规范,而且命名为sobel算子,就是对一副图像的输入到输出边缘信息的整个处理过程。

sobel算子的思想,Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。

sobel算子的原理,对传进来的图像像素做卷积,卷积的实质是在求梯度值,或者说给了一个加权平均,其中权值就是所谓的卷积核;然后对生成的新像素灰度值做阈值运算,以此来确定边缘信息。

#3,卷积核及计算方法

若Gx是对原图x方向上的卷积,Gy是对原图y方向上的卷积;

原图中的作用点像素值通过卷积之后为:

可以简化成:

比如,一下矩阵为原图中的像素点矩阵,带入上式中的A,最终得到的G或者|G|是下面(x,y)处的像素值,可以自己去搜索下卷积的含义来理解。

另外,卷积核也可以旋转,用与查找不与x,y轴平行或垂直的方向上的边缘。

#4,阈值处理及平滑处理

得到像素点新的像素值之后,给定一个阈值就可以得到sobel算子计算出的图像边缘了。

通常,为了消除噪声对sobel算子的影响,会增加一个预处理的操作,主要是做平滑处理降低噪声的影响。

#5,matlab代码实现

Gx=[1.0 2.0 1.0;0.0 0.0 0.0;-1.0 -2.0 -1.0];
Gy=[-1.0 0.0 1.0;-2.0 0.0 2.0;-1.0 0.0 1.0]; img=imread('qiaoba.jpg');
image=rgb2gray(img); subplot(2,2,1);
imshow(image);
title('原图'); gradx=conv2(Gx,image,'full');
gradx=abs(gradx); %计算图像的sobel垂直梯度
subplot(2,2,2);
imshow(gradx,[]);
title('图像的sobel垂直梯度'); grady=conv2(Gy,image,'full');
grady=abs(grady); %计算图像的sobel水平梯度
subplot(2,2,3);
imshow(grady,[]);
title('图像的sobel水平梯度'); grad=gradx+grady; %得到图像的sobel梯度
subplot(2,2,4);
imshow(grad,[]);
title('图像的sobel梯度');

处理结果:

#5,c++代码实现

来源:http://blog.csdn.net/dcrmg/article/details/52280768

#include "core/core.hpp"
#include "highgui/highgui.hpp"
#include "imgproc/imgproc.hpp"
#include "iostream" using namespace std;
using namespace cv; int main(int argc, char *argv[])
{
Mat image = imread("qiaoba.jpg", 0);
Mat imageX = Mat::zeros(image.size(), CV_16SC1);
Mat imageY = Mat::zeros(image.size(), CV_16SC1);
Mat imageXY = Mat::zeros(image.size(), CV_16SC1);
Mat imageX8UC;
Mat imageY8UC;
Mat imageXY8UC;
if (!image.data)
{
return -1;
}
GaussianBlur(image, image, Size(3, 3), 0); //高斯滤波消除噪点
uchar *P = image.data;
uchar *PX = imageX.data;
uchar *PY = imageY.data;
int step = image.step;
int stepXY = imageX.step;
for (int i = 1; i<image.rows - 1; i++)
{
for (int j = 1; j<image.cols - 1; j++)
{
//通过指针遍历图像上每一个像素
PX[i*imageX.step + j*(stepXY / step)] = abs(P[(i - 1)*step + j + 1] + P[i*step + j + 1] * 2 + P[(i + 1)*step + j + 1] - P[(i - 1)*step + j - 1] - P[i*step + j - 1] * 2 - P[(i + 1)*step + j - 1]);
PY[i*imageX.step + j*(stepXY / step)] = abs(P[(i + 1)*step + j - 1] + P[(i + 1)*step + j] * 2 + P[(i + 1)*step + j + 1] - P[(i - 1)*step + j - 1] - P[(i - 1)*step + j] * 2 - P[(i - 1)*step + j + 1]);
}
}
addWeighted(imageX, 0.5, imageY, 0.5, 0, imageXY);//融合X、Y方向
convertScaleAbs(imageX, imageX8UC);
convertScaleAbs(imageY, imageY8UC);
convertScaleAbs(imageXY, imageXY8UC); //转换为8bit图像 Mat imageSobel;
Sobel(image, imageSobel, CV_8UC1, 1, 1); //Opencv的Sobel函数 imshow("Source Image", image);
imshow("X Direction", imageX8UC);
imshow("Y Direction", imageY8UC);
imshow("XY Direction", imageXY8UC);
imshow("Opencv Soble", imageSobel);
waitKey();
return 0;
}

 

#6,sobel算子的优缺点

优点:计算简单,速度很快;

缺点:计算方向单一,对复杂纹理的情况显得乏力;

  直接用阈值来判断边缘点欠合理解释,会造成较多的噪声点误判。

sobel算子的更多相关文章

  1. EasyPR--开发详解(3)高斯模糊、灰度化和Sobel算子

    在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备 ...

  2. sobel算子的一些细节

    1. 形式 Gy 上下颠倒的 (*A表示卷积图像,忽略先): 看得出来,sobel算子感觉并不统一,特别是方向,我们知道matlab的图像格式是,x轴从左到右,y轴从上到下,原点在左上角. 所以,第二 ...

  3. sobel算子原理及opencv源码实现

    sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去 ...

  4. 彻底理解数字图像处理中的卷积-以Sobel算子为例

    彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨 ...

  5. 图像边缘检测——Sobel算子

    边缘是图像最基本的特征,其在计算机视觉.图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段. 1.何为“图像边缘”? 在图像中,“边缘” ...

  6. Sobel算子 (转)

    幻灯片1 Sobel算子 幻灯片2 一.Sobel边缘检测算子 l 在讨论边缘算子之前,首先给出一些术语的定义: l (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始, ...

  7. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  8. 对于Sobel算子的学习

    本来想说很多目前对于 Sobel 算子的认识,但最终还是觉得对于其掌握程度太低,没有一个系统的理解,远不足以写博客,但为了12月不至于零输出,还是决定把自己学习过程中找到的相关资料进行分享. 等到一月 ...

  9. EasyPR源码剖析(4):车牌定位之Sobel算子定位

    一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: ...

随机推荐

  1. js DOM Node类型

    DOM(文档对象模型)是针对HTML和XML文档的一个API. DOM可以将任何HTML或XML文档描绘成一个由多层节点构成的.以特定节点为根节点的树形结构.节点分为12种不同的类型,每种类型分别表示 ...

  2. Entity Framework 4.1 - Code First 指定外键名称

    Entity Framework 4.1 中,生成外键的方式有以下几种: 1-指定导航属性,会自动生成外键,命名规则为:“表名_主键名”2-默认情况下与导航属性的主键名称相同的字段会自动被标记为外键, ...

  3. oracle报错:ORA-00054: 资源正忙,要求指定 NOWAIT

    ORA-00054: 资源正忙, 但指定以 NOWAIT 方式获取资源: --首先得到被锁对象的session_idselect session_id from v$locked_object; -- ...

  4. hibernate总记录数查询和分页查询

    //参考代码 //第一种方法: String hql = "select count(*) from User as user"; Integer count = (Integer ...

  5. oracle忘记sys/system/scott用户密码了,如何重置oracle密码?

    今天用到的oracle数据库,但是发现以前设置的密码,忘记了,怎么输入都不对,所以从网上找了一下资料,解决了,然后整理分享给大家. 一.遇到的问题: 1..忘记除SYS.SYSTEM用户之外的用户的登 ...

  6. x01.Lab.StoreApp: XP 停服,微软变脸

    变脸,川剧的一种表演形式,除了哄哄小孩,似乎别无用处.而川剧变脸从业者何其多也,存在时间何其长也.以如此多的从业者,如此长的时间,来进行科研,其成果一定是斐然吧.推而广之,试问天下谁能敌! 微软变脸, ...

  7. http状态码详细说明

    100     客户端应当继续发送请求.这个临时响应是用来通知客户端它的部分请求已经被服务器接收,且仍未被拒绝.客户端应当继续发送请求的剩余部分,或者如果请求已经完成,忽略这个响应.服务器必须在请求完 ...

  8. nodejs模块——fs模块

    fs模块用于对系统文件及目录进行读写操作. 一.同步和异步 使用require('fs')载入fs模块,模块中所有方法都有同步和异步两种形式. 异步方法中回调函数的第一个参数总是留给异常参数(exce ...

  9. 《2016ThoughtWorks技术雷达峰会----js爆炸下的技术选型》

    JS爆炸下的技术选型  刘尚奇    ThoughtWorks, 高级咨询师 JS每6个星期出现一个新框架,那么如何进行JS的选型.以下从四个方面来分析. 1.工具 NPM for all the t ...

  10. 空间复杂度是什么?What does ‘Space Complexity’ mean? ------geeksforgeeks 翻译

    这一章比较短! 空间复杂度(space complexity)和辅助空间(auxiliary space)经常混用,下面是正确的辅助空间和空间复杂度的定义 辅助空间:算法需要用到的额外或者暂时的存储空 ...