传送门

题目大意:

给出平面上的 $n$ 个点,每个点有唯一的标号(label),这 $n$ 个标号的集合记作 $S$,点可能重合。求满足下列条件的 $S$ 的子集 $T$ 的数目:

1. $|T|\ge 2$

2. $T$中的点共线

Solution:

只包含一种点的符合条件的子集 $T$ 的数目很容易计算,以下我们只考虑其中至少有两种不同(指坐标不同,下同)点的符合条件的子集$T$(以下简称子集)的数目。

考虑过两不同点 $u, v$ 的直线上的点,将这些点的集合记作 $P_{uv}$,考虑 $P_{uv}$ 的子集对答案的贡献 $C_{u,v}$ 。

设 $|P_{uv}|=k$,则 $C_{uv}=2^k-k-1-\text{single}(P_{uv})$,其中 $\text{single}(P_{uv})$ 指 $P_{uv}$ 的只包含一种点的子集 $T$ 的数目。

现在固定 $u$,计算一共能得到几个 $P_{uv}$。这可通过以 $u$ 为基点,对(去重后的)其他点作极角排序来做到。

以每个点为基点做一次极角排序,这样每个点集 $P_{uv}$ 都被重复计算了 $|P_{uv}|$ 次。

我们用 $f[k]$ 表示模为 $k$ 的点集 $P_k$ 出现的次数。这个次数被重复计算了$k$次,$P_k$出现的次数为$\frac{f[k]}{k}$

则所有$P_k$贡献的子集的数目为

\[\frac{f[k]}{k}(2^k-k-1)-\sum\limits_{P_k}\text{single}(P_k),\]

故总计数为

\[\sum_{k=2}^{n}{\frac{f[k]}{k} 2^k-(k+1)} -\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}\]

为了计算$\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}$,另外维护一个数组 $d$,$d[u]$ 表示 $u$ 在多少个点集 $P$ 中出现过。

从而有

\[\sum_{k=2}^{n}{\sum_{P_k}\text{single}(P_k)}=\sum_{u=1}^{m}d[u]*(2^{c[u]}-c[u]-1),\]

其中 $m$ 指去重后的点数,$c[u]$ 表示与 $u$ 重合的点数。

Implement:

#include <bits/stdc++.h>
using namespace std; const int N(1e3+);
typedef long long LL;
LL mod=1e9+; struct point{
LL x, y;
void read(){
scanf("%lld%lld", &x, &y);
}
point operator-(const point &b)const{
return {x-b.x, y-b.y};
}
point operator-(){
return {-x, -y};
}
bool operator==(const point &b)const{
return x==b.x && y==b.y;
}
bool operator<(const point &b)const{
return x==b.x?y<b.y:x<b.x;
}
void out(){
cout<<x<<' '<<y<<endl;
}
LL operator^(const point &p)const{
return x*p.y-y*p.x;
}
}a[N], slope[N]; bool cmp(const int &a, const int &b){
return (slope[a]^slope[b])<; //error-prone
} int cnt[N], b[N], dup[N]; LL num[N], p[N]={}; int main(){ int T, n;
for(int i=; i<=; i++) p[i]=(p[i-]<<)%mod; for(scanf("%d", &T); T--; ){
scanf("%d", &n);
for(int i=; i<n; i++)
a[i].read(); sort(a, a+n);
for(int i=, j=, k=; i<n; j++, k=i){
for(; i<n && a[i]==a[k]; i++);
cnt[j]=i-k;
} int e=unique(a, a+n)-a; memset(num, , sizeof(num));
memset(dup, , sizeof(dup)); for(int i=; i<e; i++){ for(int j=, k=; j<e; j++){
if(i==j) continue;
slope[j]=a[j]-a[i];
if(slope[j].x<) slope[j]=-slope[j];
else if(slope[j].x== && slope[j].y<) slope[j]=-slope[j];
b[k++]=j;
} sort(b, b+e-, cmp); for(int j=, k=, sum; j<e-; k=j){
for(sum=; j<e- && (slope[b[j]]^slope[b[k]])==; sum+=cnt[b[j++]]);
num[sum+cnt[i]]+=cnt[i]; //error-prone
dup[i]++;
}
} LL _dup=, res=; for(int i=; i<e; i++) _dup+=dup[i]*(p[cnt[i]]-cnt[i]-+mod), _dup%=mod;
for(int i=; i<e; i++) res+=p[cnt[i]]-cnt[i]-+mod, res%=mod;
for(int i=; i<=n; i++)
num[i]/=i, res+=num[i]*(p[i]-i-+mod), res%=mod;
res+=mod-_dup, res%=mod;
printf("%lld\n", res);
}
}

UPD

在以某个点为基点进行极角排序需要进行一个将待排序的向量规范化(formalization)的过程, 具体的说就是保证各向量满足:

x>0 或 x==0 && y>0 (待排序都是非零向量)

题解上给出的做法更好一些:

想将输入的点去重后,按照字典序排序, 然后从左到右扫, 当扫到第$i$个点$p_i$时我们统计由$p_i$及其右面的点构成的且一定包含$p_i$的共线子集的数目, 统计的方法和前面类似.

这样做的好处是

1. 向量自然规范化

2. 不重不漏

Implementation:

HDU 5738 Eureka的更多相关文章

  1. HDU 5738 Eureka 统计共线的子集个数

    Eureka 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5738 Description Professor Zhang draws n poin ...

  2. HDU 5738 Eureka(极角排序)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5738 [题目大意] 给出平面中一些点,在同一直线的点可以划分为一个集合,问可以组成多少包含元素不少 ...

  3. hdu 5738 Eureka 极角排序+组合数学

    Eureka Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. hdu 5738 2016 Multi-University Training Contest 2 Eureka 计数问题(组合数学+STL)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题意:从n(n <= 1000)个点(有重点)中选出m(m > 1)个点(选出的点只 ...

  5. 2016 Multi-University Training Contest 2题解报告

    A - Acperience HDU - 5734 题意: 给你一个加权向量,需要我们找到一个二进制向量和一个比例因子α,使得|W-αB|的平方最小,而B的取值为+1,-1,我们首先可以想到α为输入数 ...

  6. 2016 Multi-University Training Contest 2 - 1005 Eureka

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题目大意:给定平面上的n个点,一个集合合法当且仅当集合中存在一对点u,v,对于集合中任意点w,均 ...

  7. HDU 3746:Cyclic Nacklace(KMP循环节)

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

随机推荐

  1. <实训|第八天>超级管理员管理linux用户行为权限附监控主机状态

    作为运维工程师,系统管理员,你最大的权力就是给别人分配权力,而且你还能时时控制着他们,今天就给大家介绍一下关于管理用户这一方面的前前后后.  开班第八天: 主要课程大纲:(下面我将把自己的身份定位成一 ...

  2. Chrome 监听 console 打开

    这个算是 Chrome only 其他的我没测试,也不想测试.因为我的控制台脚本仅仅在 Chrome 下加载. 如果你需要全平台,那么这肯定不是你需要的结果. 需求 其实我很早就想折腾这个了,但是,, ...

  3. 使用Spring Sleuth和Zipkin跟踪微服务

    随着微服务数量不断增长,需要跟踪一个请求从一个微服务到下一个微服务的传播过程, Spring Cloud Sleuth 正是解决这个问题,它在日志中引入唯一ID,以保证微服务调用之间的一致性,这样你就 ...

  4. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  5. LLC 逻辑链路控制

    LLC  协  议 4.2.1 LLC帧格式 LLC协议定义了LLC层之间通信的帧格式,参见图4.3. 图4.3  LLC帧格式 LLC帧格式中各个字段的含义如下: ① 服务访问点(SAP)地址:SA ...

  6. hihocoder 1260

    之前做过的oj, acm题目忘了很多了, 又要开始要刷题了, go on! #1260 : String Problem I 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...

  7. ios UITableview 刷新某一个cell 或 section

    //一个section刷新 NSIndexSet *indexSet=[[NSIndexSet alloc]initWithIndex:]; [tableview reloadSections:ind ...

  8. namespace for c++

    namespace中文意思是命名空间或者叫名字空间,传统的C++只有一个全局的namespace,但是由于现在的程序的规模越来越大,程序的分工越来越细,全局作用域变得越来越拥挤,每个人都可能使用相同的 ...

  9. bzoj4402: Claris的剑

    首先,对于本质相同的构造,我们只计算字典序最小的序列 假设序列中最大的元素为top 我们很容易发现这样的序列一定是1,2,..,1,2,3,2,3,...,2,3,4,3,4.........,top ...

  10. Linux基础2

    命令格式命令的类型:1.内部命令 linux系统使用的shell提供.2.外部命令 安装第三方软件才会. type 命令名 查命令的类型 | 把前边命令的输出作为后边命令的输入 管道 grep 对数据 ...