HDU 5738 Eureka
题目大意:
给出平面上的 $n$ 个点,每个点有唯一的标号(label),这 $n$ 个标号的集合记作 $S$,点可能重合。求满足下列条件的 $S$ 的子集 $T$ 的数目:
1. $|T|\ge 2$
2. $T$中的点共线
Solution:
只包含一种点的符合条件的子集 $T$ 的数目很容易计算,以下我们只考虑其中至少有两种不同(指坐标不同,下同)点的符合条件的子集$T$(以下简称子集)的数目。
考虑过两不同点 $u, v$ 的直线上的点,将这些点的集合记作 $P_{uv}$,考虑 $P_{uv}$ 的子集对答案的贡献 $C_{u,v}$ 。
设 $|P_{uv}|=k$,则 $C_{uv}=2^k-k-1-\text{single}(P_{uv})$,其中 $\text{single}(P_{uv})$ 指 $P_{uv}$ 的只包含一种点的子集 $T$ 的数目。
现在固定 $u$,计算一共能得到几个 $P_{uv}$。这可通过以 $u$ 为基点,对(去重后的)其他点作极角排序来做到。
以每个点为基点做一次极角排序,这样每个点集 $P_{uv}$ 都被重复计算了 $|P_{uv}|$ 次。
我们用 $f[k]$ 表示模为 $k$ 的点集 $P_k$ 出现的次数。这个次数被重复计算了$k$次,$P_k$出现的次数为$\frac{f[k]}{k}$
则所有$P_k$贡献的子集的数目为
\[\frac{f[k]}{k}(2^k-k-1)-\sum\limits_{P_k}\text{single}(P_k),\]
故总计数为
\[\sum_{k=2}^{n}{\frac{f[k]}{k} 2^k-(k+1)} -\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}\]
为了计算$\sum_{k=2}^{n}{\sum\limits_{P_k}\text{single}(P_k)}$,另外维护一个数组 $d$,$d[u]$ 表示 $u$ 在多少个点集 $P$ 中出现过。
从而有
\[\sum_{k=2}^{n}{\sum_{P_k}\text{single}(P_k)}=\sum_{u=1}^{m}d[u]*(2^{c[u]}-c[u]-1),\]
其中 $m$ 指去重后的点数,$c[u]$ 表示与 $u$ 重合的点数。
Implement:
#include <bits/stdc++.h>
using namespace std; const int N(1e3+);
typedef long long LL;
LL mod=1e9+; struct point{
LL x, y;
void read(){
scanf("%lld%lld", &x, &y);
}
point operator-(const point &b)const{
return {x-b.x, y-b.y};
}
point operator-(){
return {-x, -y};
}
bool operator==(const point &b)const{
return x==b.x && y==b.y;
}
bool operator<(const point &b)const{
return x==b.x?y<b.y:x<b.x;
}
void out(){
cout<<x<<' '<<y<<endl;
}
LL operator^(const point &p)const{
return x*p.y-y*p.x;
}
}a[N], slope[N]; bool cmp(const int &a, const int &b){
return (slope[a]^slope[b])<; //error-prone
} int cnt[N], b[N], dup[N]; LL num[N], p[N]={}; int main(){ int T, n;
for(int i=; i<=; i++) p[i]=(p[i-]<<)%mod; for(scanf("%d", &T); T--; ){
scanf("%d", &n);
for(int i=; i<n; i++)
a[i].read(); sort(a, a+n);
for(int i=, j=, k=; i<n; j++, k=i){
for(; i<n && a[i]==a[k]; i++);
cnt[j]=i-k;
} int e=unique(a, a+n)-a; memset(num, , sizeof(num));
memset(dup, , sizeof(dup)); for(int i=; i<e; i++){ for(int j=, k=; j<e; j++){
if(i==j) continue;
slope[j]=a[j]-a[i];
if(slope[j].x<) slope[j]=-slope[j];
else if(slope[j].x== && slope[j].y<) slope[j]=-slope[j];
b[k++]=j;
} sort(b, b+e-, cmp); for(int j=, k=, sum; j<e-; k=j){
for(sum=; j<e- && (slope[b[j]]^slope[b[k]])==; sum+=cnt[b[j++]]);
num[sum+cnt[i]]+=cnt[i]; //error-prone
dup[i]++;
}
} LL _dup=, res=; for(int i=; i<e; i++) _dup+=dup[i]*(p[cnt[i]]-cnt[i]-+mod), _dup%=mod;
for(int i=; i<e; i++) res+=p[cnt[i]]-cnt[i]-+mod, res%=mod;
for(int i=; i<=n; i++)
num[i]/=i, res+=num[i]*(p[i]-i-+mod), res%=mod;
res+=mod-_dup, res%=mod;
printf("%lld\n", res);
}
}
UPD
在以某个点为基点进行极角排序需要进行一个将待排序的向量规范化(formalization)的过程, 具体的说就是保证各向量满足:
x>0 或 x==0 && y>0 (待排序都是非零向量)
题解上给出的做法更好一些:
想将输入的点去重后,按照字典序排序, 然后从左到右扫, 当扫到第$i$个点$p_i$时我们统计由$p_i$及其右面的点构成的且一定包含$p_i$的共线子集的数目, 统计的方法和前面类似.
这样做的好处是
1. 向量自然规范化
2. 不重不漏
Implementation:
HDU 5738 Eureka的更多相关文章
- HDU 5738 Eureka 统计共线的子集个数
Eureka 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5738 Description Professor Zhang draws n poin ...
- HDU 5738 Eureka(极角排序)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5738 [题目大意] 给出平面中一些点,在同一直线的点可以划分为一个集合,问可以组成多少包含元素不少 ...
- hdu 5738 Eureka 极角排序+组合数学
Eureka Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- hdu 5738 2016 Multi-University Training Contest 2 Eureka 计数问题(组合数学+STL)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题意:从n(n <= 1000)个点(有重点)中选出m(m > 1)个点(选出的点只 ...
- 2016 Multi-University Training Contest 2题解报告
A - Acperience HDU - 5734 题意: 给你一个加权向量,需要我们找到一个二进制向量和一个比例因子α,使得|W-αB|的平方最小,而B的取值为+1,-1,我们首先可以想到α为输入数 ...
- 2016 Multi-University Training Contest 2 - 1005 Eureka
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题目大意:给定平面上的n个点,一个集合合法当且仅当集合中存在一对点u,v,对于集合中任意点w,均 ...
- HDU 3746:Cyclic Nacklace(KMP循环节)
Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- [JAVA教程] 2016年最新spring4框架搭建视频教程 【尚学堂】
Spring4框架 主讲:邹波 类型:SSH 适合对象:学习完javase.数据库技术.jdbc者 Spring4.0作为一个广泛使用的开源框架,它由Rod Johnson创建.它是为了解决企业应用开 ...
- 在windows下安装配置Ulipad
在windows下安装配置Ulipad 今天推荐一款轻便的文本编辑器Ulipad,用来写一些小的Python脚本非常方便. Ulipad下载地址: https://github.com/limodou ...
- 完全背包变型题(hdu5410)
这是2015年最后一场多校的dp题,当时只怪自己基础太差,想了1个多小时才想出来,哎,9月份好好巩固基础,为区域赛做准备.题目传送门 题目的意思是给你n元钱,m类糖果,每类糖果分别有p, a, b, ...
- web 前端常用组件【03】Bootstrap Multiselect
实际的项目网站中或多或少的或用到多选框,我选用的一款是 Bootstrap Multiselect. 官方文档:http://www.kuitao8.com/demo/20140224/1/boots ...
- Windows Azure 云服务角色架构
当我们使用VS发布一个Cloud Service或者在Portal上上传发布包后,就能启动和运行一个云服务,可以保护WebRole,WorkerRole的一个或者多个实例. Windows Azure ...
- 基于FPGA的音频信号的FIR滤波(Matlab+Modelsim验证)
1 设计内容 本设计是基于FPGA的音频信号FIR低通滤波,根据要求,采用Matlab对WAV音频文件进行读取和添加噪声信号.FFT分析.FIR滤波处理,并分析滤波的效果.通过Matlab的分析验证滤 ...
- 重叠(Overlapping) NAT
当内部网络也使用公网注册地址(或者是外网合法地址)时,如果仍使用标准的静态或者动态NAT转换,则可能使得转换的内网地址与外网中合法地址冲突,使数据包又返回到了本地网络,这肯定是不行的.这时我们就要使用 ...
- 网络功能虚拟化(NFV)
你造什么是网络功能虚拟化(NFV)吗? NFV将网络功能整合到行业标准的服务器.交换机和存储硬件上,提供了优化的虚拟化数据平面,NFV通过服务器上运行的软件让管理员取代传统物理网络设备,并降低成本.能 ...
- C语言strcat()函数:连接字符串
头文件:#include <string.h> strcat() 函数用来连接字符串,其原型为: char *strcat(char *dest, const char *src); ...
- MVC认知路【点点滴滴支离破碎】【五】----form表单上传单个文件
//个人理解:前台一个form加input[type='file'],在加一个submit的按钮 主要设置form的action,method,enctype='multipart/form-data ...