Deep Learning 7_深度学习UFLDL教程:Self-Taught Learning_Exercise(斯坦福大学深度学习教程)
前言
理论知识:自我学习
练习环境:win7, matlab2015b,16G内存,2T硬盘
练习内容及步骤:Exercise:Self-Taught Learning。具体如下:
一是用29404个无标注数据unlabeledData(手写数字数据库MNIST Dataset中数字为5-9的数据)来训练稀疏自动编码器,得到其权重参数opttheta。这一步的目的是提取这些数据的特征,虽然我们不知道它提取的究竟是哪些特征(当然,可以通过可视化结果看出来,可假设其提取的特征为Features),但是我们知道它提取到的特征实际上就是已训练好的稀疏自动编码器的隐藏层的激活值(即:第2层激活值)。注意:本节所有训练稀疏自动编码器的算法用的都L-BFGS算法。
二是把15298个已标注数据trainData(手写数字数据库MNIST Dataset中数字为0-4的前一半数据)作为训练数据集通过这个已训练好的稀疏自动编码器(即:权重参数为opttheta的稀疏自动编码器),就可提取出跟上一步一样的相同的特征参数,这里trainData提取的特征表达假设为trainFeatures,它其实也是隐藏层的激活值。如果还不明白,这里打一个比方:假设上一步提取的是一个通信信号A(对应unlabeledData)的特征是一阶累积量,而这一步提取的就是通信信号B(对应trainData)的一阶累积量,它们提取的都是同样的特征,只是对象不同而已。同样地,unlabeledData和trainData提取的是同样的特征Features,只是对象不同而已。
注意:如果上一步对unlabeledData做了预处理,一定要把其各种数据预处理参数(比如PCA中主成份U)保存起来,因为这一步的训练数据集trainData和下一步的测试数据集testData也一定要做相同的预处理。本节练习,因为用的是手写数字数据库MNIST Dataset,已经经过了预处理,所以不用再预处理。
具体见:http://ufldl.stanford.edu/wiki/index.php/%E8%87%AA%E6%88%91%E5%AD%A6%E4%B9%A0
三是把15298个已标注数据testData(手写数字数据库MNIST Dataset中数字为0-4的后一半数据)作为测试数据集通过这个已训练好的稀疏自动编码器(即:权重参数为opttheta的稀疏自动编码器),,就可提取出跟上一步一样的相同的特征参数,这里testData提取的特征表达假设为testFeatures,它其实也是隐藏层的激活值。
四是把第二步提取出来的特征trainFeatures和已标注数据trainData的标签trainLabels作为输入来训练softmax分类器,得到其回归模型softmaxModel。
五是把第三步提取出来的特征testFeatures输入训练好的softmax回归模型softmaxModel,从而预测出已标注数据testData的类别pred,再把pred和已标注数据testData本来的标签testLabels对比,就可得出正确率。
综上,Self-taught learning是利用未标注数据,用无监督学习来提取特征参数,然后用有监督学习和提取的特征参数来训练分类器。
本节方法适用范围:
用于在一些拥有大量未标注数据和少量的已标注数据的场景中,本节方法可能是最有效的。即使在只有已标注数据的情况下(这时我们通常忽略训练数据的类标号进行特征学习),以上想法也能得到很好的结果。
一些matlab函数
numel:求元素总数。
n=numel(A)该语句返回数组中元素的总数。
s=size(A),当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时数组的行数,第二个元素是数组的列数。
[r,c]=size(A),当有两个输出参数时,size函数将数组的行数返回到第一个输出变量,将数组的列数返回到第二个输出变量。
round(n)的意思是纯粹的四舍五入,意思与我们以前数学中的四舍五入是一样的!
find
找到非零元素的索引和值
语法:
1. ind = find(X)
2. ind = find(X, k)
3. ind = find(X, k, 'first')
4. ind = find(X, k, 'last')
5. [row,col] = find(X, ...)
6. [row,col,v] = find(X, ...)
说明:
1. ind = find(X)
找出矩阵X中的所有非零元素,并将这些元素的线性索引值(linear indices:按列)返回到向量ind中。
如果X是一个行向量,则ind是一个行向量;否则,ind是一个列向量。
如果X不含非零元素或是一个空矩阵,则ind是一个空矩阵。
2. ind = find(X, k) 或 3. ind = find(X, k, 'first')
返回第一个非零元素k的索引值。
k必须是一个正数,但是它可以是任何数字数值类型。
4. ind = find(X, k, 'last')
返回最后一个非零元素k的索引值。
5. [row,col] = find(X, ...)
返回矩阵X中非零元素的行和列的索引值。
这个语法对于处理稀疏矩阵尤其有用。
如果X是一个N(N>2)维矩阵,col包括列的线性索引。
例如,一个5*7*3的矩阵X,有一个非零元素X(4,2,3),find函数将返回row=4和col=16。也就是说,(第1页有7列)+(第2页有7列)+(第3页有2列)=16。
6. [row,col,v] = find(X, ...)
返回X中非零元素的一个列或行向量v,同时返回行和列的索引值。
如果X是一个逻辑表示,则v是一个逻辑矩阵。
输出向量v包含通过评估X表示得到的逻辑矩阵的非零元素。
例如,
A= magic(4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
[r,c,v]= find(A>10);
r', c', v'
ans =
1 2 4 4 1 3 (按列)
ans =
1 2 2 3 4 4 (按列)
ans =
1 1 1 1 1 1
这里返回的向量v是一个逻辑矩阵,它包含N个非零元素,N=(A>10)
例子:
例1
X = [1 0 4 -3 0 0 0 8 6];
indices = find(X)
返回X中非零元素的线性索引值。
indices =
1 3 4 8 9
例2
你可以用一个逻辑表达方式定义X。例如
find(X > 2)
返回X中大于2的元素的相对应的线性索引值。
ans =
3 8 9
unique:
unique为找出向量中的非重复元素并进行排序后输出。
运行结果
权重参数opttheta中W1的可视化结果,也就是所提取特征的可视化结果如下:
Test Accuracy: 98.333115%
Elapsed time is 594.435594 seconds.
结果总结:
1. 为什么Andrew Ng他们训练样本用25分钟,而我所有运行时间不到6分钟?估计前几年电脑配置比现在的电脑配置差很多!
2.为了对比,Andrew Ng团队做了实验,如果不用本节稀疏自动编码器提取的特征代替原始像素值(即:原始数据)训练softmax分类器,准确率最多达到96%。实际上,本节练习和上一节练习Deep Learning六:Softmax Regression_Exercise(斯坦福大学UFLDL深度学习教程)的不同之处,就是本节练习用的是稀疏自动编码器提取的特征训练softmax分类器,而上一节练习用的原始数据训练softmax分类器,上节练习我们得到的准确率实际上只有92.640%,当然,可能Andrew Ng团队的准确率最多达到了96%。
代码
stlExercise.m
%% CS294A/CS294W Self-taught Learning Exercise % Instructions
% ------------
%
% This file contains code that helps you get started on the
% self-taught learning. You will need to complete code in feedForwardAutoencoder.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises.
%
%% ======================================================================
% STEP : Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below.
tic
inputSize = * ;
numLabels = ;
hiddenSize = ;
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term
maxIter = ; %% ======================================================================
% STEP : Load data from the MNIST database
%
% This loads our training and test data from the MNIST database files.
% We have sorted the data for you in this so that you will not have to
% change it. % Load MNIST database files
mnistData = loadMNISTImages('train-images.idx3-ubyte');
mnistLabels = loadMNISTLabels('train-labels.idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set
labeledSet = find(mnistLabels >= & mnistLabels <= );%返回mnistLabels中元素值大于等于0且小于等于4的数字的行号
unlabeledSet = find(mnistLabels >= ); numTrain = round(numel(labeledSet)/);
trainSet = labeledSet(:numTrain);
testSet = labeledSet(numTrain+:end); unlabeledData = mnistData(:, unlabeledSet);% 无标签数据集 trainData = mnistData(:, trainSet);% mnistData中大于等于0且小于等于4的数字的前一半数字作为有标签的训练数据
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet);% mnistData中大于等于0且小于等于4的数字的后一半数字作为有标签的测试数据
testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics
fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, ));
fprintf('# examples in supervised training set: %d\n\n', size(trainData, ));
fprintf('# examples in supervised testing set: %d\n\n', size(testData, )); %% ======================================================================
% STEP : Train the sparse autoencoder
% This trains the sparse autoencoder on the unlabeled training
% images. % 按均匀分布随机初始化theta参数 Randomly initialize the parameters
theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ----------------------
% Find opttheta by running the sparse autoencoder on
% unlabeledTrainingImages
% 利用L-BFGS算法,用无标签数据集来训练稀疏自动编码器 opttheta = theta; addpath minFunc/
options.Method = 'lbfgs';
options.maxIter = ;
options.display = 'on';
[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSize, ...
lambda, sparsityParam, ...
beta, unlabeledData), ...
theta, options); %% ----------------------------------------------------- % Visualize weights
W1 = reshape(opttheta(:hiddenSize * inputSize), hiddenSize, inputSize);
display_network(W1'); %%======================================================================
%% STEP : 从有标签数据集中提取特征 Extract Features from the Supervised Dataset
%
% You need to complete the code in feedForwardAutoencoder.m so that the
% following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
testData); %%======================================================================
%% STEP : Train the softmax classifier softmaxModel = struct;
%% ----------------- YOUR CODE HERE ----------------------
% Use softmaxTrain.m from the previous exercise to train a multi-class
% classifier.
% 利用L-BFGS算法,用从有标签训练数据集中提取的特征及其标签,训练softmax回归模型, % Use lambda = 1e- for the weight regularization for softmax
lambda = 1e-;
inputSize = hiddenSize;
numClasses = numel(unique(trainLabels));%unique为找出向量中的非重复元素并进行排序
% You need to compute softmaxModel using softmaxTrain on trainFeatures and
% trainLabels options.maxIter = ; %最大迭代次数
softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ...
trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%======================================================================
%% STEP : Testing %% ----------------- YOUR CODE HERE ----------------------
% Compute Predictions on the test set (testFeatures) using softmaxPredict
% and softmaxModel [pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score
fprintf('Test Accuracy: %f%%\n', *mean(pred(:) == testLabels(:)));
toc
% (note that we shift the labels by , so that digit now corresponds to
% label )
%
% Accuracy is the proportion of correctly classified images
% The results for our implementation was:
%
% Accuracy: 98.3%
%
%
feedForwardAutoencoder.m
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder
% visibleSize: the number of input units (probably )
% hiddenSize: the number of hidden units (probably )
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes. W1 = reshape(theta(:hiddenSize*visibleSize), hiddenSize, visibleSize);
b1 = theta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder. activation = sigmoid(W1*data+repmat(b1,[,size(data,)]));
%------------------------------------------------------------------- end %-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end
参考资料:
http://www.cnblogs.com/tornadomeet/archive/2013/03/24/2979408.html
……
Deep Learning 7_深度学习UFLDL教程:Self-Taught Learning_Exercise(斯坦福大学深度学习教程)的更多相关文章
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...
- Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...
- Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...
- Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...
- Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...
- Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)
前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数 ...
随机推荐
- mysql5.5 修改字符集
对于使用者来说,一般推荐使用utf8编码来存储数据.而要解决乱码问题,不单单是MySQL数据的存储问题,还和用户的程序文件的编码方式.用户程序和MySQL数据库的连接方式都有关系. 首先,MySQL有 ...
- Install MySQL on Mac by Homebrew
1. 安装mysql brew update brew install mysql 2. 启动mysql mysql.server start 3. 登录mysql mysql -uroot -p ...
- Web Project犯错误!
创建一个Web Project关于数据库连接,输入doGet中调用req.setCharacterEncoding("utf-8)错误输成uft-8 经常忘记HttpServletReque ...
- 大商创开通用户和店铺 sql追踪
添加用户(账号:wmy123 ,密码:wzd222,id:69)INSERT INTO `dsc1`.`dsc_users` (user_name,mobile_phone,email,passwor ...
- Mac OS的phpize空信息解决办法
Mac下执行phpize 出现以下信息 grep: /usr/include/php/main/php.h: No such file or directory grep: /usr/include/ ...
- IIS配置注意点
1.是否有权限 2.程序池是否为4.0集成 3.是否启用目录浏览模式:目录浏览==>启用(好像可以不用) 4.是否设置默认页面 5.其他的,百度. asp.net发布到IIS中出现错误:处理程序 ...
- 反编译ILSpy 无法显式调用运算符或访问器 错误处理方法 转
反汇编一个dll类库,导出的项目会报出很多bug,其中主要的就是“无法显式调用运算符或访问器”这个错误,看了一下,发现问题是在调用属性的时候,都 变成了方法,例如:pivotPoint.set_X(0 ...
- datatable-提示
`默认columns配置问题: 记住是columnDefs不是columnsDefs `Cannot read property 'sWidth' of undefined: columns的数量和t ...
- es5.0 head插件安装
1. 在 elasticsearch.yml 文件增加配置http.cors.enabled: truehttp.cors.allow-origin: "*"2. 下载插件git ...
- CentOS配置SSH免密码登录后,仍提示输入密码
CentOS配置SSH无密码登录需要3步: 生成公钥和私钥 导入公钥到认证文件,更改权限 测试 1.生成公钥和私钥 ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa 默 ...