4522: [Cqoi2016]密钥破解

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 290  Solved: 148
[Submit][Status][Discuss]

Description

 一种非对称加密算法的密钥生成过程如下:
1.任选两个不同的质数p,q
2.计算N=pq,r=(p−1)(q−1)
3.选取小于r,且与r互质的整数e
4.计算整数d,使得ed≡1KQ/r
5.二元组(N,e)称为公钥,二元组(N,d)称为私钥
当需要加密消息M时(假设M是一个小于L整数,因为任何格式的消息都可转为整数表示),
使用公钥(N,e),按照n^e≡cKQ/N运算,可得到密文C。
对密文C解密时,用私钥(N,d),按照c^d≡nKQ/N运算,可得到原文M。算法正确性证明省略。
由于用公钥加密的密文仅能用对应的私钥解密,而不能用公钥解密,因此称为非对称加密算法。
通常情况下,公钥由消息的接收方公开,而私钥由消息的接收方自己持有。这样任何发送消息的
人都可以用公钥对消息加密,而只有消息的接收方自己能够解密消息。
现在,你的任务是寻找一种可行的方法来破解这种加密算法,即根据公钥破解出私钥,并据此解密密文。

Input

输入文件内容只有一行,为空格分隔的j个正整数e,N,c。N<=2^62,c<N

Output

输出文件内容只有一行,为空格分隔的k个整数d,n。

Sample Input

3 187 45

Sample Output

107 12
//样例中 p = 11, q = 17

HINT

Source

Solution

跟着题意模拟...数论大集合(和 猪文 比好像还差点?)

先用Pollard_Rho分解$N$,求出$r$,答案为$Inv(e,r)$和$c^{Inv(e,r)}%N$

求逆元的过程,ExGcd解决好了.分解就是各种随,挺高效的...

坑点:需要快速乘,不然乘法爆longlong....

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
long long read()
{
long long x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
long long e,N,c,r,P,Q;
long long Quick_Mul(long long x,long long y,long long p)
{
long long re=;
for (long long i=y; i; i>>=,x=(x+x)%p)
if (i&) re=(re+x)%p;
return re;
}
long long Quick_Pow(long long x,long long y,long long p)
{
long long re=;
for (long long i=y; i; i>>=,x=Quick_Mul(x,x,p))
if (i&) re=Quick_Mul(re,x,p);
return re;
}
void Exgcd(long long a,long long b,long long &x,long long &y)
{
if (b==) {x=; y=; return;}
Exgcd(b,a%b,y,x); y-=(a/b)*x;
}
long long GetInv(long long n,long long p)
{
long long x,y;
Exgcd(n,p,x,y);
return (x%p+p)%p;
}
long long Gcd(long long a,long long b)
{
if (b==) return a;
return Gcd(b,a%b);
}
#define T 10007
long long Pollard_Rho(long long n)
{
long long x,y,cnt=,k=;
x=rand()%(n-)+; y=x;
while ()
{
cnt++;
x=(Quick_Mul(x,x,n)+T)%n;
long long gcd=Gcd(abs(x-y),n);
if (<gcd && gcd<n) return gcd;
if (x==y) return n;
if (cnt==k) y=x,k<<=;
}
}
int main()
{
srand(T);
e=read(),N=read(),c=read();
P=Pollard_Rho(N); Q=N/P;
r=(P-)*(Q-);
long long Inv=GetInv(e,r);
printf("%lld %lld",Inv,Quick_Pow(c,Inv,N));
return ;
}

WA了好几次,发现是复制的时候少复制了一个头文件.....(不是应该CE的说么??)

【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)的更多相关文章

  1. bzoj 3481 DZY loves math —— 反演+Pollard_rho分解质因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推式子:xy % P = Q 的个数 由于 0 <= x,y < P,所以 ...

  2. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  3. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  4. BZOJ 4522: [Cqoi2016]密钥破解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4522 题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和 ...

  5. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  6. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  7. 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS

    LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...

  8. ACM数论-快速幂

    ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成 ...

  9. BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)

    Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...

随机推荐

  1. Could not load file or assembly 'System.Data.SQLite' or one of its dependencies

    试图加载格式不正确的程 异常类型 异常消息Could not load file or assembly 'System.Data.SQLite' or one of its dependencies ...

  2. OS X运行AFNI的AlphaSim提示libgomp.1.dylib找不到的解决办法

    运行环境:OS X Mavericks 10.9.4,AFNI 问题描述: 运行AlphaSim命令时,提示以下信息dyld: Library not loaded: /usr/local/lib/l ...

  3. Java 8 Lambda表达式探险

    为什么?    我们为什么需要Lambda表达式    主要有三个原因:    > 更加紧凑的代码      比如Java中现有的匿名内部类以及监听器(listeners)和事件处理器(hand ...

  4. 通向高可扩展性之路(推特篇) ---- 一个推特用来支撑1亿5千万活跃用户、30万QPS、22MB每秒Firehose、以及5秒内推送信息的架构

    原文链接:http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active ...

  5. 《深入理解Spark:核心思想与源码分析》(前言及第1章)

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  6. 创建多个Oracle数据库及相应的实例

    转 http://blog.csdn.net/luiseradl/article/details/6972217 对于使用过SQL Server数据库的用户可以会对Oracle中的数据库的实例的概念理 ...

  7. 网页设计:Meta标签详解

    很多人忽视了HTML标签META的强大功效,一个好的META标签设计可以大大提高你的个人网站被搜索到的可能性,有兴趣吗,谁我来重新认识一下META标签吧! META标签是HTML语言HEAD区的一个辅 ...

  8. jQuery插件---exselect实现联动

    <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...

  9. C#中的Where和Lambda表达式

    1 2 3 4 5 6 7 8 9 10 11 List<string> listString = new List<string>(); listString.Add(&qu ...

  10. C++成员变量的初始化顺序问题

    问题来源: 由于面试题中,考官出了一道简单的程序输出结果值的题:如下, class A { private: int n1; int n2; public: A():n2(0),n1(n2+2){} ...