【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 290 Solved: 148
[Submit][Status][Discuss]
Description
Input
输入文件内容只有一行,为空格分隔的j个正整数e,N,c。N<=2^62,c<N
Output
输出文件内容只有一行,为空格分隔的k个整数d,n。
Sample Input
Sample Output
//样例中 p = 11, q = 17
HINT
Source
Solution
跟着题意模拟...数论大集合(和 猪文 比好像还差点?)
先用Pollard_Rho分解$N$,求出$r$,答案为$Inv(e,r)$和$c^{Inv(e,r)}%N$
求逆元的过程,ExGcd解决好了.分解就是各种随,挺高效的...
坑点:需要快速乘,不然乘法爆longlong....
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
long long read()
{
long long x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
long long e,N,c,r,P,Q;
long long Quick_Mul(long long x,long long y,long long p)
{
long long re=;
for (long long i=y; i; i>>=,x=(x+x)%p)
if (i&) re=(re+x)%p;
return re;
}
long long Quick_Pow(long long x,long long y,long long p)
{
long long re=;
for (long long i=y; i; i>>=,x=Quick_Mul(x,x,p))
if (i&) re=Quick_Mul(re,x,p);
return re;
}
void Exgcd(long long a,long long b,long long &x,long long &y)
{
if (b==) {x=; y=; return;}
Exgcd(b,a%b,y,x); y-=(a/b)*x;
}
long long GetInv(long long n,long long p)
{
long long x,y;
Exgcd(n,p,x,y);
return (x%p+p)%p;
}
long long Gcd(long long a,long long b)
{
if (b==) return a;
return Gcd(b,a%b);
}
#define T 10007
long long Pollard_Rho(long long n)
{
long long x,y,cnt=,k=;
x=rand()%(n-)+; y=x;
while ()
{
cnt++;
x=(Quick_Mul(x,x,n)+T)%n;
long long gcd=Gcd(abs(x-y),n);
if (<gcd && gcd<n) return gcd;
if (x==y) return n;
if (cnt==k) y=x,k<<=;
}
}
int main()
{
srand(T);
e=read(),N=read(),c=read();
P=Pollard_Rho(N); Q=N/P;
r=(P-)*(Q-);
long long Inv=GetInv(e,r);
printf("%lld %lld",Inv,Quick_Pow(c,Inv,N));
return ;
}
WA了好几次,发现是复制的时候少复制了一个头文件.....(不是应该CE的说么??)
【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)的更多相关文章
- bzoj 3481 DZY loves math —— 反演+Pollard_rho分解质因数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推式子:xy % P = Q 的个数 由于 0 <= x,y < P,所以 ...
- 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)
读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...
- BZOJ 2751 容易题(easy) 快速幂+快速乘
2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...
- BZOJ 4522: [Cqoi2016]密钥破解
http://www.lydsy.com/JudgeOnline/problem.php?id=4522 题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和 ...
- pku1365 Prime Land (数论,合数分解模板)
题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- ACM数论-快速幂
ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成 ...
- BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)
Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...
随机推荐
- Could not load file or assembly 'System.Data.SQLite' or one of its dependencies
试图加载格式不正确的程 异常类型 异常消息Could not load file or assembly 'System.Data.SQLite' or one of its dependencies ...
- OS X运行AFNI的AlphaSim提示libgomp.1.dylib找不到的解决办法
运行环境:OS X Mavericks 10.9.4,AFNI 问题描述: 运行AlphaSim命令时,提示以下信息dyld: Library not loaded: /usr/local/lib/l ...
- Java 8 Lambda表达式探险
为什么? 我们为什么需要Lambda表达式 主要有三个原因: > 更加紧凑的代码 比如Java中现有的匿名内部类以及监听器(listeners)和事件处理器(hand ...
- 通向高可扩展性之路(推特篇) ---- 一个推特用来支撑1亿5千万活跃用户、30万QPS、22MB每秒Firehose、以及5秒内推送信息的架构
原文链接:http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active ...
- 《深入理解Spark:核心思想与源码分析》(前言及第1章)
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...
- 创建多个Oracle数据库及相应的实例
转 http://blog.csdn.net/luiseradl/article/details/6972217 对于使用过SQL Server数据库的用户可以会对Oracle中的数据库的实例的概念理 ...
- 网页设计:Meta标签详解
很多人忽视了HTML标签META的强大功效,一个好的META标签设计可以大大提高你的个人网站被搜索到的可能性,有兴趣吗,谁我来重新认识一下META标签吧! META标签是HTML语言HEAD区的一个辅 ...
- jQuery插件---exselect实现联动
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...
- C#中的Where和Lambda表达式
1 2 3 4 5 6 7 8 9 10 11 List<string> listString = new List<string>(); listString.Add(&qu ...
- C++成员变量的初始化顺序问题
问题来源: 由于面试题中,考官出了一道简单的程序输出结果值的题:如下, class A { private: int n1; int n2; public: A():n2(0),n1(n2+2){} ...