F - Cycling Roads
 
 

Description

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
 

Input

The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
 

Output

Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

Sample Input

input output
4 2
0 0
1 0
1 1
0 1
1 3
4 2
YES

题意:

  给你n点

  给你m条直线

  问你所有点是否相连

题解:

  点在线段上、线段是否相交板子来判断

  吧相连的点加入集合

  最后判断所有点是否都在一个集合里边即可

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 5e4+, M = 1e2+, mod = 1e9+, inf = 1e9+;
typedef long long ll;
const double INF = 1E200;
const double EP = 1E-;
const int MAXV = ;
const double PI = 3.14159265;
struct POINT
{
double x;
double y;
POINT(double a=, double b=) { x=a; y=b;} //constructor
POINT operator - (const POINT &b) const {
return POINT(x - b.x , y - b.y);
}
double operator ^ (const POINT &b) const {
return x*b.y - y*b.x;
}
};
struct LINE
{
POINT s;
POINT e;
LINE(POINT a, POINT b) { s=a; e=b;}
LINE() { }
};
int sgn(double x) {if(fabs(x) < EP)return ;if(x < ) return -;else return ;}
bool inter(LINE l1,LINE l2) {
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e) ^ (l1.s - l1.e))*sgn((l2.e-l1.e) ^ (l1.s-l1.e)) <= &&
sgn((l1.s-l2.e) ^ (l2.s - l2.e))*sgn((l1.e-l2.e) ^ (l2.s-l2.e)) <= ;
}
bool onseg(POINT P , LINE L) {
return
sgn((L.s-P)^(L.e-P)) == &&
sgn((P.x - L.s.x) * (P.x - L.e.x)) <= &&
sgn((P.y - L.s.y) * (P.y - L.e.y)) <= ;
}
//intersection
POINT p[N];
LINE dg[N];
int n,m,posa[N],posb[N],fa[N],cnt,vis[N]; int finds(int x) {return x==fa[x]?x:fa[x]=finds(fa[x]);}
void unions(int x,int y) {
int fx = finds(x);
int fy = finds(y);
if(fx != fy) fa[fx] = fy;
}
int main()
{
scanf("%d%d",&n,&m); for(int i=;i<=n;i++) fa[i] = i; for(int i=;i<=n;i++) {
double x,y;
scanf("%lf%lf",&x,&y);
p[i] = (POINT) {x,y};
}
for(int i=;i<=m;i++) {
scanf("%d%d",&posa[i],&posb[i]);
unions(posa[i],posb[i]);
dg[i] = (LINE) {p[posa[i]],p[posb[i]]};
}
//点在线段上
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
if(onseg(p[i],dg[j])) {
unions(i,posa[j]);
unions(i,posb[j]);
}
}
} POINT pp ;//线段交点
for(int i=;i<=m;i++) {
for(int j=;j<=m;j++) {
if(inter(dg[i],dg[j])) {
unions(posa[i],posa[j]);
unions(posa[i],posb[j]);
unions(posb[i],posa[j]);
unions(posb[i],posb[j]);
}
}
} int all = ;
int fi = finds();
for(int i=;i<=n;i++) {
if(finds(i)!=fi) {
puts("NO");return ;
}
}
puts("YES"); }

URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集的更多相关文章

  1. URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...

  2. Ural 1966 Cycling Roads

    ================ Cycling Roads ================   Description When Vova was in Shenzhen, he rented a ...

  3. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

  4. 【CF576E】Painting Edges 线段树按时间分治+并查集

    [CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...

  5. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  6. BZOJ_4025_二分图_线段树按时间分治+并查集

    BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. 判断线段相交(hdu1558 Segment set 线段相交+并查集)

    先说一下题目大意:给定一些线段,这些线段顺序编号,这时候如果两条线段相交,则把他们加入到一个集合中,问给定一个线段序号,求在此集合中有多少条线段. 这个题的难度在于怎么判断线段相交,判断玩相交之后就是 ...

  9. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...

随机推荐

  1. 【leetcode】Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  2. ios coredata 无任何错误提示crash

    最近写程序是遇到了一种情况,对coredata 操作时,有一定几率crash,crash时无任何说明,断点调试后发现,fetch出的对象的属性竟然和数据库中的不同,不知道什么情况下导致了context ...

  3. ios 音乐播放,音乐信息显示方法

    下面的博客写的很清楚了 http://msching.github.io/blog/page/2/ 主要涉及AVAudioPlayer和下面这几个函数 MPNowPlayingInfoCenter.d ...

  4. [Linux]centOS7下RPM安装Perl

    1.下载rpm依赖包,依照顺序安装. perl-parent-0.225-244.el7.noarch   perl-HTTP-Tiny-0.033-3.el7.noarch   perl-podla ...

  5. ABAP 行列稳定刷新语句

    DATA stbl TYPE lvc_s_stbl. stbl-row = 'X'." 基于行的稳定刷新         stbl-col = 'X'." 基于列稳定刷新      ...

  6. nohup后台运行jar

    nohup 用途:LINUX命令用法,不挂断地运行命令.  语法:nohup Command [ Arg ... ] [ & ]  描述:nohup 命令运行由 Command 参数和任何相关 ...

  7. 【leetcode】Single Number II (medium) ★ 自己没做出来....

    Given an array of integers, every element appears three times except for one. Find that single one. ...

  8. 地图API文档

    目录 腾讯地图API 2 1.API概览... 2 1.1 WebService API(官网注明是beta版本,可能不稳定,慎用):... 2 1.2 URL API:... 2 1.3 静态图AP ...

  9. 在R语言中无法设置CRAN镜像问题

    很大的可能是因为使用的浏览器不是IE浏览器的问题,因为CRAN的镜像需要用IE浏览器来打开. 只需要按照下面设置即可: 1.打开IE-->设置-->Internet选项-->高级 2 ...

  10. Android Service 与 Thread 的区别

    Ref:http://blog.csdn.net/jiangwei0910410003/article/details/17008687 1). Thread:Thread 是程序执行的最小单元,它是 ...