F - Cycling Roads
 
 

Description

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
 

Input

The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
 

Output

Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

Sample Input

input output
4 2
0 0
1 0
1 1
0 1
1 3
4 2
YES

题意:

  给你n点

  给你m条直线

  问你所有点是否相连

题解:

  点在线段上、线段是否相交板子来判断

  吧相连的点加入集合

  最后判断所有点是否都在一个集合里边即可

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 5e4+, M = 1e2+, mod = 1e9+, inf = 1e9+;
typedef long long ll;
const double INF = 1E200;
const double EP = 1E-;
const int MAXV = ;
const double PI = 3.14159265;
struct POINT
{
double x;
double y;
POINT(double a=, double b=) { x=a; y=b;} //constructor
POINT operator - (const POINT &b) const {
return POINT(x - b.x , y - b.y);
}
double operator ^ (const POINT &b) const {
return x*b.y - y*b.x;
}
};
struct LINE
{
POINT s;
POINT e;
LINE(POINT a, POINT b) { s=a; e=b;}
LINE() { }
};
int sgn(double x) {if(fabs(x) < EP)return ;if(x < ) return -;else return ;}
bool inter(LINE l1,LINE l2) {
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e) ^ (l1.s - l1.e))*sgn((l2.e-l1.e) ^ (l1.s-l1.e)) <= &&
sgn((l1.s-l2.e) ^ (l2.s - l2.e))*sgn((l1.e-l2.e) ^ (l2.s-l2.e)) <= ;
}
bool onseg(POINT P , LINE L) {
return
sgn((L.s-P)^(L.e-P)) == &&
sgn((P.x - L.s.x) * (P.x - L.e.x)) <= &&
sgn((P.y - L.s.y) * (P.y - L.e.y)) <= ;
}
//intersection
POINT p[N];
LINE dg[N];
int n,m,posa[N],posb[N],fa[N],cnt,vis[N]; int finds(int x) {return x==fa[x]?x:fa[x]=finds(fa[x]);}
void unions(int x,int y) {
int fx = finds(x);
int fy = finds(y);
if(fx != fy) fa[fx] = fy;
}
int main()
{
scanf("%d%d",&n,&m); for(int i=;i<=n;i++) fa[i] = i; for(int i=;i<=n;i++) {
double x,y;
scanf("%lf%lf",&x,&y);
p[i] = (POINT) {x,y};
}
for(int i=;i<=m;i++) {
scanf("%d%d",&posa[i],&posb[i]);
unions(posa[i],posb[i]);
dg[i] = (LINE) {p[posa[i]],p[posb[i]]};
}
//点在线段上
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
if(onseg(p[i],dg[j])) {
unions(i,posa[j]);
unions(i,posb[j]);
}
}
} POINT pp ;//线段交点
for(int i=;i<=m;i++) {
for(int j=;j<=m;j++) {
if(inter(dg[i],dg[j])) {
unions(posa[i],posa[j]);
unions(posa[i],posb[j]);
unions(posb[i],posa[j]);
unions(posb[i],posb[j]);
}
}
} int all = ;
int fi = finds();
for(int i=;i<=n;i++) {
if(finds(i)!=fi) {
puts("NO");return ;
}
}
puts("YES"); }

URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集的更多相关文章

  1. URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...

  2. Ural 1966 Cycling Roads

    ================ Cycling Roads ================   Description When Vova was in Shenzhen, he rented a ...

  3. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

  4. 【CF576E】Painting Edges 线段树按时间分治+并查集

    [CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...

  5. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  6. BZOJ_4025_二分图_线段树按时间分治+并查集

    BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. 判断线段相交(hdu1558 Segment set 线段相交+并查集)

    先说一下题目大意:给定一些线段,这些线段顺序编号,这时候如果两条线段相交,则把他们加入到一个集合中,问给定一个线段序号,求在此集合中有多少条线段. 这个题的难度在于怎么判断线段相交,判断玩相交之后就是 ...

  9. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...

随机推荐

  1. Mybatis中的in查询和foreach标签

    Mybatis中的foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合. foreach元素的属性主要有 item,index,collection,open,separato ...

  2. Android开发者必备的42个链接

    http://mobile.51cto.com/ahot-426035.htm Android开发者必备的42个链接 下面收集了42个帮助大家学习Android的内容链接,部分内容是面向初学者的,帮助 ...

  3. Java for LeetCode 225 Implement Stack using Queues

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  4. iScroll.js 用法参考 (share)

    分享是传播.学习知识最好的方法 以下这篇文章是iScroll.js官网的中文翻译,尽管自己英文不好,但觉得原作者们翻译的这个资料还是可以的,基本用法介绍清楚了.如果你英文比较好的话,可以看看官网的资料 ...

  5. dropdownlist 动态添加

    this.DropDownList1.Items.Insert(0,new ListItem("",""));                this.Drop ...

  6. Redis内存管理(二)

    上一遍详细的写明了Redis为内存管理所做的初始化工作,这篇文章写具体的函数实现. 1.zmalloc_size,返回内存池大小函数,因为库不同,所以这个函数在内部有很多的宏定义,通过具体使用的库来确 ...

  7. cookie的设置、获取以及删除

    首先介绍一下cookie的基本信息: cookie是以域为单位的,它必须放在服务器的的环境下,但是cookie的容量小,只有4kb,并且也不安全,还有入股cookie的名字相同,会修改或者覆盖原来的值 ...

  8. Java动态代理一Proxy

    什么是动态代理? 动态代理可以提供对另一个对象的访问,同时隐藏实际对象的具体事实.代理一般会实现它所表示的实际对象的接口.代理可以访问实际对象,但是延迟实现实际对象的部分功能,实际对象实现系统的实际功 ...

  9. NYOJ题目769乘数密码

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsQAAAJYCAIAAADqk2fsAAAgAElEQVR4nO3dPVLrytbG8XcS5AyEWA

  10. Android5.0如何正确启用isLoggable(二) 理分析

    转自:http://www.it165.net/pro/html/201506/43374.html 概要 在上文<Android 5.0 如何正确启用isLoggable(一)__使用详解&g ...