【LOJ6053】简单的函数(min_25筛)
题面
题解
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 222222
#define MOD 1000000007
ll n,Sqr,w[MAX];
ll pri[MAX],id1[MAX],id2[MAX],h[MAX],g[MAX],m;
bool zs[MAX];
int tot,sp[MAX];
void pre(int n)
{
zs[1]=true;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,sp[tot]=(sp[tot-1]+i)%MOD;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
}
}
}
int S(ll x,int y)
{
if(x<=1||pri[y]>x)return 0;
int k=(x<=Sqr)?id1[x]:id2[n/x],ret=(g[k]-sp[y-1]-h[k]+y-1)%MOD;
if(y==1)ret+=2;
for(int i=y;i<=tot&&1ll*pri[i]*pri[i]<=x;++i)
{
ll t1=pri[i],t2=1ll*pri[i]*pri[i];
for(int e=1;t2<=x;++e,t1=t2,t2*=pri[i])
(ret+=((1ll*S(x/t1,i+1)*(pri[i]^e)%MOD+(pri[i]^(e+1))%MOD)))%=MOD;
}
return ret;
}
int main()
{
scanf("%lld",&n);Sqr=sqrt(n);
pre(Sqr);
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);w[++m]=n/i;
h[m]=(w[m]-1)%MOD;
g[m]=(w[m]%MOD)*((w[m]+1)%MOD)%MOD;
if(g[m]&1)g[m]=g[m]+MOD;g[m]/=2;g[m]--;
if(w[m]<=Sqr)id1[w[m]]=m;
else id2[j]=m;
}
for(int j=1;j<=tot;++j)
for(int i=1;i<=m&&pri[j]*pri[j]<=w[i];++i)
{
int k=(w[i]/pri[j]<=Sqr)?id1[w[i]/pri[j]]:id2[n/(w[i]/pri[j])];
(g[i]-=1ll*pri[j]*(g[k]-sp[j-1])%MOD)%=MOD;
(h[i]-=h[k]-j+1)%=MOD;
}
int ans=S(n,1)+1;
printf("%d\n",(ans+MOD)%MOD);
return 0;
}
【LOJ6053】简单的函数(min_25筛)的更多相关文章
- LOJ.6053.简单的函数(Min_25筛)
题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...
- LOJ 6053 简单的函数——min_25筛
题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...
- 简单的函数——Min_25筛
%%yyb %%zsy 就是实现一下Min-25筛 筛积性函数的操作 首先要得到 $G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi ...
- loj 6053 简单的函数 —— min_25筛
题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...
- LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...
- LOJ6053 简单的函数(min_25筛)
题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...
- [LOJ6053]简单的函数:Min_25筛
分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...
- LOJ6053 简单的函数
题目传送门 分析: 对于这道题来说,当\(x\)为质数时: \(~~~~f(x)=x-1+2[x=2]\) 因为除2以外的质数都是奇数,它们与1异或就是减一,然后2就是加一 然后我们先来康康怎么快速求 ...
- Min_25 筛
Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\( ...
- [算法]Min_25筛
前言 本篇文章中使用的字母\(p\),指\(\text{任意的} p \in \text{素数集合}\) 应用场景 若函数\(f(x)\)满足, \(f(x)\)是积性函数 \(f(p)\)可以使用多 ...
随机推荐
- 将工程改造为SOA架构
商城是基于soa的架构,表现层和服务层是不同的工程.所以要实现商品列表查询需要两个系统之间进行通信. 流动计算架构 当服务越来越多,容量的评估,小服务资源的浪费等问题逐渐显现,此时需增加一个调度中心基 ...
- 自己实现数据结构系列四---Queue
一.代码部分 1.定义接口: public interface Queue<E> { void enqueue(E e); E dequeue(); E getFront(); int g ...
- alibaba druid
FAQ · alibaba/druid Wikihttps://github.com/alibaba/druid/wiki/FAQ sql 连接数不释放 ,Druid异常:wait millis 40 ...
- js判断是否是微信浏览器以及重定向
async created () {//这个是判断是否是微信浏览器, let ua = navigator.userAgent.toLowerCase() if (ua.match(/MicroMes ...
- h5-语义化标签
###1.语义化标签 在h5之前,在开发过程中大量div的id名称重复,例如div id="footer"来标记页脚内容,所以html5元素引入了语义化标签(一组新的片段类元素) ...
- ES7的新特性
ES7的新特性 ES7 特性: 1.Array.prototype.includes2.Exponentiation Operator(求幂运算) 一,Array.prototype.includes ...
- Tomcat 目录结构以及基本配置
1 Tomcat 目录层次结构 ① bin:存放启动和关闭tomcat 的脚本文件② conf: 存放配置文件 server.xml:该文件用于配置和server 相关的信息,比如tomcat 启动端 ...
- 将表单数据转换为json代码分享
<body> <form action="#" method="post" id="form1"> <inpu ...
- Oracle增删改查sql语句
--创建表空间 create tablespace waterboss datafile 'd:\waterboss.dbf' size 100m autoextend on next 10m --创 ...
- vue小问题库
引入vue组件命名时,不用特殊标签,比如<head>,不然会按特殊标签处理