回归中最为基础的方法, 最小二乘法.

\[
\begin{align*}
J_{LS}{(\theta)} &= \frac { 1 }{ 2 } { \left\| A\vec { x } -\vec { b } \right\| }^{ 2 }\quad \\
\end{align*}
\]

向量的范数定义

\[
\begin{align*}
\vec x &= [x_1,\cdots,x_n]^{\rm T}\\
\|\vec x\|_p &= \left( \sum_{i=1}^m{|x_i|^p}\right)^\frac{1}{p}, \space p<+\infty
\end{align*}
\]

\(L_2\)范数具体为

\[
\|\vec x\|_2 = (|x_1|^2 + \cdots+|x_m|^2)^{\frac{1}2} = \sqrt{\vec x ^{\rm T}\vec x }
\]

矩阵求导

采用列向量形式定义的偏导算子称为列向量偏导算子, 习惯称为\(\color {red} {梯度算子}\), n x 1 列向量偏导算子即梯度算子记作 \(\nabla_x\), 定义为

\[
\nabla_x = \frac{\partial}{\partial x} = \left[ \frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\right] ^{\rm T}
\]

如果\(\vec x 是一个n\times 1\text{的列向量}\), 那么

\[
\begin{eqnarray}
\frac{\partial y x}{\partial x}=y^T \\
\frac{\partial(x^TA x)}{\partial x}=(A+A^T)x \\
\end{eqnarray}
\]

更多参照wiki矩阵计算

通过以上准备, 我们下面进行求解

\[
\begin{align*}
\therefore \quad J_{LS}{(\theta)} &= \frac { 1 }{ 2 } { \left\| A{ x } -\vec { b } \right\| }^{ 2 } \\
&= \frac{1}{2} (Ax-b)^T (Ax-b) \\
&= \frac{1}{2} (x^TA^T-b^T)(Ax-b) \\
&= \frac{1}{2}(x^TA^TAx-2b^TAx+b^Tb)
\end{align*} \\
\]

需要注意的 b, x 都是列向量, 那么 \(b^T Ax\) 是个标量, 标量的转置等于自身, \(b^T Ax =x^TA^Tb\)

对\(\vec x\)求导得:
\[J_{LS}'{(\theta)}=A^TA x-A^Tb=A^T(Ax-b)\]

向量的L2范数求导的更多相关文章

  1. 正则化的L1范数和L2范数

    范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss& ...

  2. L2范数归一化概念和优势

    1 归一化处理        归一化是一种数理统计中常用的数据预处理手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间或者将数据向量的某个范数映射为1,归一化 ...

  3. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  4. python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)

    求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...

  5. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  6. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

  7. L0、L1与L2范数、核范数(转)

    L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...

  8. 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  9. L0/L1/L2范数(转载)

    一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...

随机推荐

  1. CodeForces999E 双dfs // 标记覆盖 // tarjan缩点

    http://codeforces.com/problemset/problem/999/E 题意 有向图    给你n个点,m条边,以及一个初始点s,问你至少还需要增加多少条边,使得初始点s与剩下其 ...

  2. TensorFlow入门学习(让机器/算法帮助我们作出选择)

    catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...

  3. SVN简单的使用

    一.什么是SVN有什么用? SVN是Subversion的简称,是一个开放源代码的版本控制系统.主要是用于团队开发中的资源共享和团队协作. 二.SVN服务器的安装 1.下载安装文件 在下面地址下载Vi ...

  4. Java中的XML

    XML是一种可扩展的标记语言,可扩展就是<>内的东西可以自己定义,可以随便写.标记语言就是加了<>符号的 .HTML是超文本标记语言,不可以拓展,因为你写个<p> ...

  5. SpringMvc+jQuery 文件拖拽上传、选择上传

    最近做了个简易的基于boostrap的文件上传功能,jsp版本的,后续会完善更多的功能,不过现在已经能用了,需要的小伙伴,直接引用下面的文件内容直接copy到自己的项目中就ok了,效果如图: file ...

  6. ES6checker ES6浏览器检测

    检测地址如下: http://ruanyf.github.io/es-checker/index.cn.html Chrome 44检测结果如下:

  7. XOR 加密

    XOR 是一个神奇的运算符, 观察它的真值表, 很容易得到以下结论: 假设现有 a , b 变量, 则 a ^ 0 == a a ^ 0xff == ~a (取反加1等于作为补码的a的真值的相反数的补 ...

  8. MySQL C API概述

    以下列表总结了C API中可用的功能.有关更多详细信息,请参见 第27.8.7节“C API函数描述”中的说明. my_init():在线程安全程序中初始化全局变量和线程处理程序 mysql_affe ...

  9. Gossip

    http://www.cnblogs.com/xingzc/p/6165084.html 敬请期待...

  10. sqlserver二进制存储

    CREATE TABLE myTable_yq(Document varbinary(max),yq varchar(20)) --SELECT @xmlFileName = 'c:\TestXml. ...