题意

题目链接

Sol

可以把题目转化为从\([1, 2n + 1]\)中选\(k\)个数,使其和为\((n+1)k\)。

再转化一下:把\((n+1)k\)划分为\(k\)个数,满足每个数在范围在\([1, 2n + 1]\)

这时候就可以用整数划分的思路dp了(然鹅我还是想不出来。。)

因为每个数互不相同,因此我们可以把每个阶段划分出来的数都看做不降的

设\(f[i][j]\)表示前\(i\)个数,和为\(j\)且满足条件的方案数。

我们考虑最小的数是否是\(1\)

若不是\(1\),则映射到所有数\(-1\),也就是\(f[i][j - i]\)

若是\(1\),这时候相当于对于\(f[i - 1][j - (i-1)]\)的所有数\(+1\),同时在最前面补上\(1\),方案为\(f[i - 1][j - i]\)

然后再减去最大的数超过\(2n+1\)的方案,也就是\(f[i][j - (2n + 2)]\)

复杂度\(O(Tnk^2)\)

#include<bits/stdc++.h>
#define Fin(x) freopen(#x".in", "r", stdin);
using namespace std;
const int MAXN = 50001;
int mod;
template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;}
template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;}
template<typename A, typename B> inline int add(A &x, B y) {return x + y >= mod ? x + y - mod : x + y;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int inv(int x) {
return fp(x, mod - 2);
}
int f[101][100001];
void solve() {
int N = read(), K = read(); mod = read();
memset(f, 0, sizeof(f));
f[0][0] = 1;
for(int j = 1; j <= (N + 1) * K; j++)
for(int i = 1; i <= min(j, K); i++) {
f[i][j] = add(f[i][j - i], f[i - 1][j - i]);
if(j >= 2 * N + 2) add2(f[i][j], -f[i - 1][j - (2 * N + 2)] + mod);
}
cout << f[K][(N + 1) * K] << '\n';
}
signed main() {
for(int T = read(); T--; solve());
return 0;
}

洛谷P4104 [HEOI2014]平衡(dp 组合数学)的更多相关文章

  1. P4104 [HEOI2014]平衡

    友情提醒:取模太多真的会TLE!!! P4104 [HEOI2014]平衡 题解 本题属于 DP-整数划分 类问题中的 把整数 n 划分成 k 个不相同不大于 m 的正整数问题 设置DP状态  f[ ...

  2. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  3. 洛谷P3158 [CQOI2011]放棋子 组合数学+DP

    题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...

  4. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  5. NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...

  6. 洛谷P1244 青蛙过河 DP/思路

    又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...

  7. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  8. 洛谷P1140 相似基因 (DP)

    洛谷P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. ...

  9. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

随机推荐

  1. 应用监控CAT之cat-home源码阅读(三)

    上两章从点到点讲了,cat-client  到  cat-consumer 的请求处理过程,但是怎么样让我们监控给人看到呢?那么就需要一个展示的后台了,也就是本章要讲的 cat-home 模块 ! 带 ...

  2. python面试中被问的最多的10道题

    1 性能: 解析下面代码慢在哪里def strtest1(num):str='first'for i in range(num):str+="X"return str解析:pyth ...

  3. 机器学习入门07 - 验证 (Validation)

    原文链接:https://developers.google.com/machine-learning/crash-course/validation/ 1- 检查直觉 将一个数据集划分为训练集和测试 ...

  4. [原创]K8Cscan插件之存活主机扫描

    [原创]K8 Cscan 大型内网渗透自定义扫描器 https://www.cnblogs.com/k8gege/p/10519321.html Cscan简介:何为自定义扫描器?其实也是插件化,但C ...

  5. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  6. murri

    github: https://github.com/haltu/muuri 官网:https://haltu.github.io/muuri/   安装 npm install murri —sav ...

  7. mysql 开发基础系列15 索引的设计和使用

    一.概述 所有mysql 列类型都可以被索引,是提高select查询性能的最佳方法. 根据存储引擎可以定义每个表的最大索引数和最大索引长度,每种引擎对每个表至少支持16个索引,总索引长度至少为256字 ...

  8. [Charles]SSLHandshake: Received fatal alert: certificate_unknown

    ---------------------- 转载请注明出处 http://www.cnblogs.com/dzblog/p/8119712.html --------------------- 今天 ...

  9. git 下载部分目录

    需求 github上整个工厂比较大,下起来费劲,如何只下载一个单独的文件件呢? 方法一 以:https://github.com/eugenp/tutorials为例,下载其中的 spring-kaf ...

  10. ASP.NET-FineUI开发实践-18

    Grid编辑下垃级联 看了看专业版的例子,分为以下几步,都是前端的 1.编辑父下拉框后,重置子下拉框 2.编辑子下垃框前,通过父下垃框数据得到下垃项,然后绑定数据 所以这里要截取Grid的两个事件,编 ...