BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)
题意
求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$
$T \leqslant 5000, N \leqslant 10^7$
Sol
延用BZOJ4407的做法
化到最后可以得到
$$\sum_{T = 1}^n \frac{n}{T} \frac{n}{T} \sum_{d \mid T}^n \phi(d) \mu(\frac{T}{d})$$
后面的那个是积性函数,直接筛出来
注意这个函数比较特殊,筛的时候需要分几种情况讨论
1. $H(p) = p - 2$
2. $H(p^2) = p^2 - 2p + 1$
3. $H(p^{k + 1}) = H(p^k) * p$
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
const int MAXN = 1e7 + , mod = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int prime[MAXN], vis[MAXN], tot;
LL H[MAXN], low[MAXN];
void GetH(int N) {
H[] = vis[] = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, H[i] = i - , low[i] = i;
for(int j = ; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(!(i % prime[j])) {
low[i * prime[j]] = low[i] * prime[j];
if(low[i] == i) {
if(low[i] == prime[j]) H[i * prime[j]] = (H[i] * prime[j] + );
else H[i * prime[j]] = H[i] * prime[j];
}
else H[i * prime[j]] = H[i / low[i]] * H[low[i] * prime[j]];
break;
}
H[i * prime[j]] = H[i] * H[prime[j]];
low[i * prime[j]] = prime[j];
}
}
for(int i = ; i <= N; i++)
H[i] = H[i - ] + H[i];
}
int main() {
GetH(1e7 + );
int T = read();
while(T--) {
int N = read(), last;
LL ans = ;
for(int i = ; i <= N; i = last + ) {
last = N / (N / i);
ans = ans + 1ll * (N / i) * (N / i) * (H[last] - H[i - ]);
}
printf("%lld\n", ans);
}
return ;
}
/*
3
7001
123000
10000000
*/
BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)的更多相关文章
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛
Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...
- 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
随机推荐
- ruby-super用法
ruby语法-super用法 本文主要介绍ruby中super方法的使用.super方法参数传递.method执行顺序. 下面主要通过实例来说明super方法的使用: 示例1: #!/usr/bin/ ...
- ”危险“的restrict与GCC的编译优化
restrict是C99标准中新添加的关键字,对于从C89标准开始起步学习C语言的同学来说(包括我),第一次看到restrict还是相当陌生的.Wikipedia给出的解释如下: In the C p ...
- vs2017使用GitHub插件发布项目到github
几乎每天都从博客园获取新知识,今天才发现我竟然没有博客园的账号,你说气人不.2008年10月就开始在CSDN上写记录,因为CSDN做记录还可以,但记录整个项目就有些捉襟见肘,后来就写Demo做备份到云 ...
- mongo 字段重命名
执行语句 db.getCollection("A表").updateMany( {}, { $rename: { "A": "A1"} } ...
- 【python35小工具】b站弹幕保存
后面有时间学习弹框,加个弹框 效果图: 原理: 原理简单不繁琐 1 根据设置的参数去post请求json参数 2 json提取出用户名和时间以及弹幕内容 (其中值得注意的时,页面默认会保存10个弹幕, ...
- Jenkins技巧:如何启动、停止、重启、重载Jenkins
----------------------------------------------------------------- 原创博文,如需转载请通知作者并注明出处! 博主:疲惫的豆豆 链接:h ...
- java --Integer 学习
本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 在网上看到一个面试题,没有完全做, 本代码基于JDK8 //下面代码运行结果是 public class ...
- 浅谈JavaScript 函数作用域当中的“提升”现象
在JavaScript当中,定义变量通过var操作符+变量名.但是不加 var 操作符,直接赋值也是可以的. 例如 : message = "hello JavaScript ! " ...
- PowerDesigner使用方法
我们需要创建一个测试数据库,一步一步来学习使用PowerDesigner,为了简单,我们在这个数据库中只创建一个Student表和一个Major表.其表结构和关系如下所示. 看看怎样用PowerDes ...
- jdk8 分隔字符串最新方法
//已字符串分隔方法最新 方法 StringJoiner stringJoiner=new StringJoiner(","); stringJoiner.add("a& ...