题意

求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$

$T \leqslant 5000, N \leqslant 10^7$

Sol

延用BZOJ4407的做法

化到最后可以得到

$$\sum_{T = 1}^n \frac{n}{T} \frac{n}{T} \sum_{d \mid T}^n \phi(d) \mu(\frac{T}{d})$$

后面的那个是积性函数,直接筛出来

注意这个函数比较特殊,筛的时候需要分几种情况讨论

1. $H(p) = p - 2$

2. $H(p^2) = p^2 - 2p + 1$

3. $H(p^{k + 1}) = H(p^k) * p$

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
const int MAXN = 1e7 + , mod = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int prime[MAXN], vis[MAXN], tot;
LL H[MAXN], low[MAXN];
void GetH(int N) {
H[] = vis[] = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, H[i] = i - , low[i] = i;
for(int j = ; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(!(i % prime[j])) {
low[i * prime[j]] = low[i] * prime[j];
if(low[i] == i) {
if(low[i] == prime[j]) H[i * prime[j]] = (H[i] * prime[j] + );
else H[i * prime[j]] = H[i] * prime[j];
}
else H[i * prime[j]] = H[i / low[i]] * H[low[i] * prime[j]];
break;
}
H[i * prime[j]] = H[i] * H[prime[j]];
low[i * prime[j]] = prime[j];
}
}
for(int i = ; i <= N; i++)
H[i] = H[i - ] + H[i];
}
int main() {
GetH(1e7 + );
int T = read();
while(T--) {
int N = read(), last;
LL ans = ;
for(int i = ; i <= N; i = last + ) {
last = N / (N / i);
ans = ans + 1ll * (N / i) * (N / i) * (H[last] - H[i - ]);
}
printf("%lld\n", ans);
}
return ;
}
/*
3
7001
123000
10000000
*/

BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)的更多相关文章

  1. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  2. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

  3. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  4. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  5. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  6. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  7. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  8. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  9. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

随机推荐

  1. Kali学习笔记14:SMB扫描、SMTP扫描

    SMB(Server Message Block)协议,服务消息块协议. 最开始是用于微软的一种消息传输协议,因为颇受欢迎,现在已经成为跨平台的一种消息传输协议. 同时也是微软历史上出现安全问题最多的 ...

  2. TX-LCN分布式事务Demo实战

    1. TX-LCN分布式事务Demo实战 1.1. 原理介绍 1.1.1. 事务控制原理 TX-LCN由两大模块组成, TxClient.TxManager,TxClient作为模块的依赖框架,提供T ...

  3. Java NIO工作机制简介

    前言 本博客只简单介绍NIO的原理实现和基本工作流程 I/O和NIO的本质区别 NIO将填充和提取缓冲区的I/O操作转移到了操作系统 I/O 以流的方式处理数据,而 NIO 以缓冲区的方式处理数据:I ...

  4. Kubernetes 笔记 03 扫清概念

    本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回复「1024」即可领取,欢迎大家关注,二维码文末可以扫. Hi,大家好, ...

  5. 2,linux入门到上手-ssh安装配置及虚拟机基本使用

    ssh配置 1,打开"终端窗口",输入 "sudo apt-get update" --> 回车 --> "输入当前登录用户的管理员密码& ...

  6. git push 到github时,报错:ERROR: Permission to xxx.git denied to user

    之前我电脑的本地git已经登录了一个github账号,今天想换另外一个新的github账户来提交项目,相当于同一台电脑使用两个github账户. 于是我先修改用户名和邮箱. git config -- ...

  7. VueJs(1)---快速上手VueJs

    [VueJs入门] 版权声明 首先申明:此篇博客不是本人原创,只是最近开始学习vue.jS,看到有作者写的很不错,我仅在它的基础上仅仅是修改了样式 原文博客地址:https://blog.csdn.n ...

  8. Lua IUP 环境搭建

    1.从sourceforge.net下载Luabinaries.IUP.CD.IM.LuaGL的源码 2.编译CD 2.1.用cd\mak.vc12中的lua_version53.props替换lua ...

  9. HashTable原理与源码分析

    本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作,如有错误之处忘不吝批评指正! HashTable内部存储结构 HashTable内部存储结构为数组+单向链 ...

  10. Chapter 4 Invitations——10

    "Mr. Cullen?" the teacher called, seeking the answer to a question that I hadn't heard. “C ...