Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9546   Accepted: 5076

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. akand bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50 思路:
求一个生成树,要求生成树的各边权值极差最小。
一开始想到的Prim,枚举某一个点的每一条边,接下来的扩展尽可能往这条边靠,想了一下,有些许困难。
原因是一个点边的扩展可能有多条,所以不知道我们应该下一步究竟要选那些边。
于是去用kruskal,也是枚举边,就是枚举每一条边,作为起始的第一条边,以此生成最小生成树,比较每一个生成树的极差。
比起prim,kruskal好写一点。。。 代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
int f[10086];
struct node
{
int x,y;
int w;
}e[10086];
int n,m;
const int inf = 2100000000;
bool cmp(node a,node b)
{
return a.w<b.w;
} int getf(int t)
{
if(t==f[t]){return t;}
return f[t]=getf(f[t]);
} bool Merge(int a,int b)
{
int s = getf(a);
int t = getf(b);
if(s==t){
return false;
}
else{
f[t]=s;
}
} int Kruskal(int s)
{
int maxx=0;
int num = 1;
for(int i=s;i<=m;i++){
if(Merge(e[i].x,e[i].y)){
maxx=e[i].w;num++;
}
}
if(num==n)return maxx-e[s].w;
else return -1;
} void init()
{
for(int i=1;i<=n;i++){
f[i]=i;
}
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n+m){
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
}
sort(e+1,e+m+1,cmp);
int ans=inf;
for(int i=1;i<=m;i++){
init();
int ansi=Kruskal(i);
if(ansi==-1){break;}
ans=min(ans,ansi);
}
if(ans==inf){printf("-1\n");}
else printf("%d\n",ans);
}
}

  

POJ 3522 Slim Span(极差最小生成树)的更多相关文章

  1. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  2. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  3. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  4. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  7. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  8. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  9. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

随机推荐

  1. E: Unable to correct problems, you have held broken packages

    问题: apt install libmysqlclient-dev Reading package lists... DoneBuilding dependency tree       Readi ...

  2. PHP namespace、require、use区别

    假设 有文件a.php 代码 <?php class a{//类a public function afun()//函数afun { echo "aaaa"; } } ?&g ...

  3. MyISAM索引和InnoDB索引的区别

    首先你要知道: 无论是Myisam和Innodb引擎,如果在建表的时候没有显示的定义一行主键列的话,他内部都会自动创建一个隐藏的主键索引: 主键索引以外的索引假设称为次索引:首先Myisam和Inno ...

  4. react用构造函数创建组件

    有两种方法,一种是通过构造函数创建,一种是通过class创建 1.构造函数创建组件 用function+组件名的方式创建,创建好了,在render里面以标签的形式一丢就可以啦!但是这种方式必须要ret ...

  5. 关于读取mapper的两种方式

    第一种: 第二种:

  6. hdu1878-并查集,欧拉回路

    纯裸题..写着方便理解... 题意:判断一个无向图是否存在欧拉回路... 解题思路:并查集判断一下是否联通,然后再判断一下点的度数是否为偶数就行了: #include<iostream> ...

  7. Facebook开源最先进的语音系统wav2letter++

    最近,Facebook AI Research(FAIR)宣布了第一个全收敛语音识别工具包wav2letter++.该系统基于完全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的两倍 ...

  8. centos6 nginx 安装【转】

    原文 https://www.cnblogs.com/yaoximing/p/6068622.html 1.下载nginx 方法一 wget http://nginx.org/download/ngi ...

  9. SpringBoot2.0.3 + SpringSecurity5.0.6 + vue 前后端分离认证授权

    新项目引入安全控制 项目中新近添加了Spring Security安全组件,前期没怎么用过,加之新版本少有参考,踩坑四天,终完成初步解决方案.其实很简单,Spring Security5相比之前版本少 ...

  10. robotframework用例标签的使用

    *** Settings ***Force Tags req-42Default Tags owner-john smoke *** Variables ***${HOST} 10.0.1.42 ** ...