Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9546   Accepted: 5076

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. akand bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50 思路:
求一个生成树,要求生成树的各边权值极差最小。
一开始想到的Prim,枚举某一个点的每一条边,接下来的扩展尽可能往这条边靠,想了一下,有些许困难。
原因是一个点边的扩展可能有多条,所以不知道我们应该下一步究竟要选那些边。
于是去用kruskal,也是枚举边,就是枚举每一条边,作为起始的第一条边,以此生成最小生成树,比较每一个生成树的极差。
比起prim,kruskal好写一点。。。 代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
int f[10086];
struct node
{
int x,y;
int w;
}e[10086];
int n,m;
const int inf = 2100000000;
bool cmp(node a,node b)
{
return a.w<b.w;
} int getf(int t)
{
if(t==f[t]){return t;}
return f[t]=getf(f[t]);
} bool Merge(int a,int b)
{
int s = getf(a);
int t = getf(b);
if(s==t){
return false;
}
else{
f[t]=s;
}
} int Kruskal(int s)
{
int maxx=0;
int num = 1;
for(int i=s;i<=m;i++){
if(Merge(e[i].x,e[i].y)){
maxx=e[i].w;num++;
}
}
if(num==n)return maxx-e[s].w;
else return -1;
} void init()
{
for(int i=1;i<=n;i++){
f[i]=i;
}
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n+m){
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
}
sort(e+1,e+m+1,cmp);
int ans=inf;
for(int i=1;i<=m;i++){
init();
int ansi=Kruskal(i);
if(ansi==-1){break;}
ans=min(ans,ansi);
}
if(ans==inf){printf("-1\n");}
else printf("%d\n",ans);
}
}

  

POJ 3522 Slim Span(极差最小生成树)的更多相关文章

  1. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  2. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  3. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  4. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  7. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  8. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  9. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

随机推荐

  1. 为什么int型最大的数是2147483647

    32位的电脑中,用二进制表示,最大的就是32个1,用十进制表示为2^32-1,大概40多亿(4294967295) 对于有符号的,第一位用作表示正负(0,1),最大的就是31个1,用十进制表示为2^3 ...

  2. 模型的CURD操作

    class Index { public function index() { return '<h3>欢迎来到PHP中文网</h3>'; } public function ...

  3. How to remove unwant Explorer Context Menu

    HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Folder\shell HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Directory\shell

  4. Java常用调试技巧(转)

    调试不仅可以查找到应用程序缺陷所在,还可以解决缺陷.对于Java程序员来说,他们不仅要学会如何在Eclipse里面开发像样的程序,更需要学会如何调试程序.本文介绍了Java程序员必知的10个调试技巧, ...

  5. POJ 1012

    参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6480880.html Joseph Time Limit: 1000MS   Memory Lim ...

  6. 「中国剩余定理CRT」学习笔记

    设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...

  7. [SDOI2013] 直径

    传送门:>HERE< 题意:给出一颗树,求出被所有的直径都经过的边的数量 解题思路: 先求出任意一条直径并记录节点. 然后依次枚举直径上的每一个节点,判断从当前节点延伸出去的非直径的一条路 ...

  8. 【AGC013C】Ants on a Circle 弹性碰撞

    题目大意 一个长度为\(lm\)的环上有\(n\)只蚂蚁,告诉你每只蚂蚁的位置和朝向,每只蚂蚁会向前爬,速度为\(1m/s\),两只蚂蚁相遇后都会掉头,问你\(t\)秒后每只蚂蚁的位置. \(n\le ...

  9. bzoj 2038: [2009国家集训队]小Z的袜子(hose) (莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  10. 【hihocoder 1628】K-Dimensional Foil(线性代数)

    hihocoder 1627 The 2017 ACM-ICPC Asia Beijing Regional Contest 北京区域赛 B.K-Dimensional Foil 题意 给定N个点的前 ...