传送门:>出错啦<

题意:给你一个整数n,每一次可以随机选择一个n的因子x(包括1和它自己),让n除以x——不停重复此过程,直到n==1. 问n被除到1的期望次数。

解题思路:

  今天刚学的期望Dp,这道题就算入门啦,顺带总结一下期望Dp的做题方法。

  一般的,我们可以设$f[i]$表示从状态i到目标状态的期望次数。因此我们可以先确定本题的目标状态——n变为1. 因此在本题中,我们可以设$f[i]$表示$n==i$时到$n==1$的期望次数。由于目标状态本身到目标状态是根本不用变的,因此先确定$f[1] = 1$

  于是由于最小的已经确定了,我们可以从1开始推:由小的来确定大的。因此我们可以枚举i,再枚举i的所有因子。设i的因子为$a_1, a_2, ..., a_m$,则有:$$f[i] = \frac{f[a_1] + f[a_2] + ... + f[a_m]}{m} + 1$$

  即f[i]可以通过除一次来得到所有的这些因子(是得到这些因子,并不是除掉,想一想为什么),因此$f[i]$变成1的期望就是它变成的所有这些因子的期望的平均值,再加上本次的这个1.

  然而很快会发现,$a_m = i$,$f[i]$总不可能用自己来转移自己吧……因此我们需要对方程进行变形

  一般处理期望这些问题的用得都是实数,所以可以当代数式来做:

  两边同时乘以$m$,$$f[i] * m = f[a_1] + f[a_2] + ... + f[i] + m$$ $$f[i] * (m - 1) = f[a_1] + f[a_2] + ... + f[a_{m-1}] + m$$ $$f[i] = \frac{f[a_1] + f[a_2] + ... + f[a_{m-1}] + m}{m - 1}$$

Code

  要注意的是,直接$O(n^2)$枚举会超时,所以我们可以$O(n\sqrt{n})$,再$O(\sqrt{n})$的时间内搞出所有因子——特判一下完全平方数即可

/*By QiXingzhi*/
#include <cstdio>
#include <cmath>
#include <queue>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int T,Case,N;
double f[];
inline void Solve(int N){
f[] = 0.0;
double m = 0.0, K = 0.0;
double flg = -1.0;
for(int i = ; i <= N; ++i){
K = 0.0;
m = 0.0;
flg = -1.0;
for(int j = ; j <= floor(sqrt(i)); ++j){
if(i % j == ){
m += 1.0;
K += f[j];
if(i % (i/j) == ){
m += 1.0;
K += f[i/j];
if(i/j == j){
flg = f[j];
}
}
}
}
if(flg != -1.0){
K -= flg;
m -= 1.0;
}
f[i] = (double)(K + m) / (double)(m - );
}
}
int main(){
Solve();
T = r;
while(T--){
N = r;
++Case;
printf("Case %d: %.8lf\n",Case, f[N]);
}
return ;
}

[LightOJ1038] Race to 1 Again的更多相关文章

  1. [算法]概率与期望DP

    前言 前两节主要针对题目分析,没时间的珂以跳过. 初步 首先举一道简单.经典的好题: [Lightoj1038]Race to 1 Again 懒得单独写,安利一下DennyQi同学的博客:https ...

  2. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  3. Promise.race

    [Promise.race] 返回最先完成的promise var p1 = new Promise(function(resolve, reject) { setTimeout(resolve, 5 ...

  4. golang中的race检测

    golang中的race检测 由于golang中的go是非常方便的,加上函数又非常容易隐藏go. 所以很多时候,当我们写出一个程序的时候,我们并不知道这个程序在并发情况下会不会出现什么问题. 所以在本 ...

  5. 【BZOJ-2599】Race 点分治

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 2590  Solved: 769[Submit][Status ...

  6. hdu 4123 Bob’s Race 树的直径+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  7. Codeforces Round #131 (Div. 2) E. Relay Race dp

    题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...

  8. 【多线程同步案例】Race Condition引起的性能问题

    Race Condition(也叫做资源竞争),是多线程编程中比较头疼的问题.特别是Java多线程模型当中,经常会因为多个线程同时访问相同的共享数据,而造成数据的不一致性.为了解决这个问题,通常来说需 ...

  9. Codeforces Round #328 (Div. 2) C. The Big Race 数学.lcm

    C. The Big Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/592/probl ...

随机推荐

  1. Windows下的两个缺陷

    记事本缺陷: 标题:新建记事本中仅输入“联通”,保存关闭后再打开,显示为乱码 详细描述: 环境说明:操作系统ALL 重现步骤: 1.新建一个记事本,在其中仅输入“联通”两个字 2.再将该记事本关闭保存 ...

  2. Python文本处理

    文本处理 (一)对文本操作的流程: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 open(file, mode='r', buffering=None, encoding ...

  3. 开发工程中遇到的BUG

    Xcode7自带Git创建的项目"Couldn’t communicate with a helper application" git xcode7 zhunjiee 2015年 ...

  4. RabbitMQ防止消息丢失

    转载请注明出处 0.目录 RabbitMQ-从基础到实战(1)— Hello RabbitMQ RabbitMQ-从基础到实战(3)— 消息的交换 1.简介 RabbitMQ中,消息丢失可以简单的分为 ...

  5. Python之拆分目录

    成分目录的好习惯,使得代码保持整洁,为以后的代码管理提供方便. 一.概念 一般目录有以下几个: bin:程序入口,存放start文件. conf:存放固定的配置信息,比如:连接redis的配置信息.连 ...

  6. form-data、x-www-form-urlencoded的区别

    form-data可以上传文件格式的,比如mp3.jpg这些:x-www-form-urlencoded不能选择格式文件,只能传key-value这种string格式的内容.

  7. [转帖]NotePad++编辑Linux中的文件

    NotePad++编辑Linux中的文件 https://blog.csdn.net/chengqiuming/article/details/78882692 原作者 未经允许不允许转帖 加密自己参 ...

  8. Spring boot + mybatis + orcale实战(干货)

    废话少说,直接上步骤: 第一步:安装好IDEA(此处省略) 第二步:在IDEA新建springboot工程 第三步:在springboot工程的pom.xml添加oracle和mybait依赖 < ...

  9. linux apache tomcat 安装和升级

    一,安装tomcat 注意!安装tomcat前需安装配置JDK,安装方式请参照这篇文章: http://www.cnblogs.com/blog4matto/p/5582054.html 1 tomc ...

  10. WPF实现Windows资源管理器(附源码)

      今天我来写一篇关于利用WPF来实现Windows的资源管理器功能,当然只是局部实现这个功能,因为在很多时候我们需要来实现对本机资源的管理,当然我们可以使用OpenFileDialog dialog ...