考虑对非障碍的点黑白染色然后做二分图最大匹配,那么有结论,先手必胜当且仅当不是完美匹配,而且可以放的点是那些可以不匹配的点

从非匹配点开始走,后手只能走到匹配点,于是先手就可以走匹配边。由于不能走走过的点,所以现在又变成了一个非匹配点;这样下去直到后手无路可走,所以先手必胜

反观完美匹配的情况,先手放在任意一个匹配的位置,后手都可以走匹配边从而变成了上面的情况,就是后手必胜

这类问题大概可以总结为:(一类可以用二分图来描述的博弈问题)

1.博弈者人数为两人,双方轮流进行决策。
2.博弈状态(对应点)可分为两类(状态空间可分为两个集合),对应二分图两边(X集和Y集)。任意合法的决策(对应边)使状态从一类跳转到另一类。(正是由于这个性质使得问题可以用二分图描述)
3.不可以转移至已访问的状态。(不可重复访问点)
4.无法转移者判负。

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int ui;
typedef long double ld;
const int maxn=,maxp=1e4+; inline char gc(){
return getchar();
static const int maxs=<<;static char buf[maxs],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,maxs,stdin),p1==p2)?EOF:*p1++;
}
inline ll rd(){
ll x=;char c=gc();bool neg=;
while(c<''||c>''){if(c=='-') neg=;c=gc();}
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=gc();
return neg?(~x+):x;
} int N,M,id[maxn][maxn],pct,cnt[];
char mp[maxn][maxn];
bool col[maxp],flag[maxp],ans[maxp];
int eg[maxp*][],egh[maxp],bel[maxp],ect; inline void adeg(int a,int b){
eg[++ect][]=b,eg[ect][]=egh[a],egh[a]=ect;
} bool dfs(int x){
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(flag[b]) continue;
flag[b]=;
if(!bel[b]||dfs(bel[b])){
bel[b]=x,bel[x]=b;
return ;
}
}return ;
} int main(){
//freopen("","r",stdin);
N=rd(),M=rd();
for(int i=;i<=N;i++) scanf("%s",mp[i]+);
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
if(mp[i][j]=='.'){
id[i][j]=++pct;
cnt[col[pct]=(i&)^(j&)]++;
if(i>&&mp[i-][j]=='.')
adeg(id[i-][j],id[i][j]),adeg(id[i][j],id[i-][j]);
if(j>&&mp[i][j-]=='.')
adeg(id[i][j-],id[i][j]),adeg(id[i][j],id[i][j-]);
}
}
}
int nn=;
for(int i=;i<=pct;i++){
CLR(flag,);
if(col[i]) nn+=dfs(i);
}
if(nn==cnt[]&&nn==cnt[]) puts("LOSE");
else{
puts("WIN");
for(int i=;i<=pct;i++){
CLR(flag,);
flag[i]=;
if(!bel[i]||dfs(bel[i])) bel[i]=,ans[i]=;
}
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
if(ans[id[i][j]]) printf("%d %d\n",i,j);
}
}
}
return ;
}

luogu4055 游戏 (二分图博弈)的更多相关文章

  1. [NOI2011]兔兔与蛋蛋游戏 二分图博弈

    题面 题面 题解 通过观察,我们可以发现如下性质: 可以看做是2个人在不断移动空格,只是2个人能移动的边不同 一个位置不会被重复经过 : 根据题目要求,因为是按黑白轮流走,所以不可能重复经过一个点,不 ...

  2. [JSOI2009]游戏 二分图博弈

    题面 题面 题解 二分图博弈的模板题,只要会二分图博弈就可以做了,可以当做板子打. 根据二分图博弈,如果一个点x在某种方案中不属于最大匹配,那么这是一个先手必败点. 因为对方先手,因此我们就是要找这样 ...

  3. [luogu1971 NOI2011] 兔兔与蛋蛋游戏 (二分图博弈)

    传送门 Solution 补一篇二分图博弈 这个博客写的很详细qwq: https://www.cnblogs.com/maijing/p/4703094.html Code //By Menteur ...

  4. BZOJ 1443 游戏(二分图博弈)

    新知识get. 一类博弈问题,基于以下条件: 1.博弈者人数为两人,双方轮流进行决策.2.博弈状态(对应点)可分为两类(状态空间可分为两个集合),对应二分图两边(X集和Y集).任意合法的决策(对应边) ...

  5. BZOJ.2437.[NOI2011]兔兔与蛋蛋游戏(二分图博弈 匈牙利)

    题目链接 首先空格的移动等价于棋子在黑白格交替移动(设起点移向白格就是黑色),且不会走到到起点距离为奇数的黑格.到起点距离为偶数的白格(删掉就行了),且不会重复走一个格子. (然后策略就同上题了,只不 ...

  6. [模板] 二分图博弈 && BZOJ2463:[中山市选2009]谁能赢呢?

    二分图博弈 from BZOJ 1443 游戏(二分图博弈) - free-loop - 博客园 定义 1.博弈者人数为两人,双方轮流进行决策. 2.博弈状态(对应点)可分为两类(状态空间可分为两个集 ...

  7. [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]

    题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...

  8. bzoj 1443 二分图博弈

    这种两个人轮流走,不能走 走过的格子的大都是二分图博弈... #include<bits/stdc++.h> #define LL long long #define fi first # ...

  9. BZOJ 1443 二分图博弈 网络流

    思路: 二分图博弈嘛 找到最大匹配的必须点 跑个网络流 前后DFS一遍 //By SiriusRen #include <queue> #include <cstdio> #i ...

随机推荐

  1. c# 抽象类,抽象方法使用(abstract)

    入行一年多,在这个IT行业,开发技术主要使用的是.NET,而对应使用的高级语言自然就是c#了.从2017年7月入职后,在平时的工作过程中,只记得使用一些方法去完成逻辑功能,而很少去深究一些语法特性,特 ...

  2. C#学习笔记之值类型与引用类型

    [TOC] C#学习笔记之值类型与引用类型 1.值类型与引用类型 1.1 深层区别 值类型与引用类型有不同的内存分布,这导致了不同的内存管理机制: 值类型由OS负责内存管理 引用类型由垃圾回收器(GC ...

  3. 高并发系统保护~ing

    由于公司业务发展,需要考虑一些高并发系统保护的问题,整理记录一下. 当发现你的系统出现访问卡顿,服务器各种性能指标接近100%(如果一个初创型企业系统正常运行情况下出现这个问题,那么应该恭喜你,你懂得 ...

  4. 第十课html5 新增标签及属性 html5学习5

    一.常用新增标签 1.header:定义页面的页眉头部 2.nav:定义导航栏 3.footer:定义页面底部,页脚 4.article:定义文章 5.section:定义区域 6.aside:定义侧 ...

  5. SAP MM 明明有需求,为啥MRP RUN后没有PR单据产生?

    SAP MM 明明有需求,为啥MRP RUN后没有PR单据产生? 用户报了一个问题说,对于物料号42011222的采购单 4500000156建好了,为啥PR没有自动生成 . 我们检查了物料的MRP ...

  6. Apache2配置多域名站点及支持https

    0x00 预备条件 申请SSL证书 建立对应站点目录 开放443端口 0x01 配置sites-available文件 执行 vi /etc/apache2/sites-available/zecoc ...

  7. 2D射影几何和变换

    阅读<计算机视觉中的多视图集合> 2D射影几何和变换 2D射影平面 本章的关键是理解线和点的对偶性.从射影平面模型出发,IP^2^内的点(a, b ,c)由IP^3^空间中一条过原点的射线 ...

  8. C语言经典算法 - 多维矩阵转一维矩阵的代码

    下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...

  9. 记MVC学习过程中一次传参到View时遇到的错误

    在跟着 <PRO ASP.NET MVC5>一书进行第七章的练习的时候遇到了以上问题, 当遇到此类问题的时候应该先检查方法传输和其视图接受的数据类型是否一致, 大多时候都是因为两者数据类型 ...

  10. IntelliJ IDEA 最新激活码

    C40PF37RR0-eyJsaWNlbnNlSWQiOiJDNDBQRjM3UlIwIiwibGljZW5zZWVOYW1lIjoiemhhbmcgeW9uZyIsImFzc2lnbmVlTmFtZ ...