RemoteJudge

第一次见到欧拉路径的题

注意到\(b\)和\(c\)的构造方法很特殊,即对于一个位置(经过\(p\)作用后)\(i\),若两个数分别为\(b_i\)和\(c_i\),那么在\(a\)中\(b_i\)与\(c_i\)相邻

其实\(p\)并没有什么用

从每一个\(b_i\)向\(c_i\)连边,那么问题转化为是否存在一条长度为\(n\)的欧拉路径,直接\(dfs\)就行了

几个\(-1\)的情况:

1.存在\(i\),使得\(b_i> c_i\)

2.不存在欧拉路径

3.求出来的路径长度不为\(n\)

上代码:

//
// _ooOoo_
// o8888888o
// 88" . "88
// (| -_- |)
// O\ = /O
// ____/`---'\____
// .' \\| |// `.
// / \\||| : |||// \
// / _||||| -:- |||||- \
// | | \\\ - /// | |
// | \_| ''\---/'' | |
// \ .-\__ `-` ___/-. /
// ___`. .' /--.--\ `. . __
// ."" '< `.___\_<|>_/___.' >'"".
// | | : `- \`.;`\ _ /`;.`/ - ` : | |
// \ \ `-. \_ __\ /__ _/ .-` / /
// ======`-.____`-.___\_____/___.-`____.-'======
// `=---='
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 佛祖保佑 全是BUG
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set> using namespace std; #define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define ll long long
#define mp make_pair
#define pb push_back
#define re register
#define il inline #define N 100000 int n, m, tot;
mii id;
multiset<int> to[2*N+5];
int ans[10*N+5], tp, d[2*N+5], cnt, p[10*N+5];
int b[N+5], c[N+5], val[2*N+5]; void dfs(int u) {
for(auto i = to[u].begin(); i != to[u].end(); i = to[u].begin()) {
auto v = *i;
to[u].erase(i), to[v].erase(to[v].lbd(u));
dfs(v);
}
ans[++tp] = u;
} int main() {
scanf("%d", &n);
for(int i = 1; i < n; ++i) {
scanf("%d", &b[i]);
if(!id.count(b[i])) id[b[i]] = ++tot, val[tot] = b[i];
}
for(int i = 1; i < n; ++i) {
scanf("%d", &c[i]);
if(b[i] > c[i]) {
printf("-1\n");
return 0;
}
if(!id.count(c[i])) id[c[i]] = ++tot, val[tot] = c[i];
to[id[c[i]]].insert(id[b[i]]), to[id[b[i]]].insert(id[c[i]]);
d[id[c[i]]]++, d[id[b[i]]]++;
}
for(int i = 1; i <= tot; ++i) if(d[i]&1) p[++cnt] = i;
if(cnt != 0 && cnt != 2) printf("-1\n");
else {
if(cnt == 0) dfs(1);
else dfs(p[1]);
if(tp != n) printf("-1\n");
else {
while(tp) printf("%d ", val[ans[tp--]]);
printf("\n");
}
}
return 0;
}

CF1152E Neko and Flashback--欧拉路径的更多相关文章

  1. [欧拉路]CF1152E Neko and Flashback

    1152E - Neko and Flashback 题意:对于长为n的序列c和长为n - 1的排列p,我们可以按照如下方法得到长为n - 1的序列a,b,a',b'. ai = min(ci, ci ...

  2. Codeforces Round #554 (Div. 2) E Neko and Flashback (欧拉路径 邻接表实现(当前弧优化..))

    就是一欧拉路径 贴出邻接表欧拉路径 CODE #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; ...

  3. E. Neko and Flashback

    传送门: 题意:假定我们已知a[]={3,4,6,5,7},  那么b[]通过min(a[i],a[i+1])得到 那么b[]={3,4,5,5}, c[]通过max(a[i],a[i+1])得到 c ...

  4. CodeForces 1152E Neko and Flashback

    题目链接:http://codeforces.com/problemset/problem/1152/E 题目大意 有一个 1~n-1 的排列p 和长度为 n 的数组 a,数组b,c定义如下: b:b ...

  5. Codeforces Round #554 ( div.2 ) 总结

    应该经常需要锻炼一下英语阅读理解能力和代码能力,所以以后还是需要多打打CF. 今天大概就是水一水找找感觉. A. Neko Finds Grapes $n$个箱子,$m$个钥匙 ($n,m \leq ...

  6. 【USACO 3.3】Riding The Fences(欧拉路径)

    题意: 给你每个fence连接的两个点的编号,输出编号序列的字典序最小的路径,满足每个fence必须走且最多走一次. 题解: 本题就是输出欧拉路径. 题目保证给出的图是一定存在欧拉路径,因此找到最小的 ...

  7. 【转】FlashBack总结之闪回查询与闪回表

    本文主要介绍利用UNDO表空间的闪回技术,主要包括:闪回表,闪回版本查询,闪回事务查询,闪回查询.这些闪回技术实现从回滚段中读取表中一定时间内操作过的数据,可用来进行数据比对,或者修正意外提交造成的错 ...

  8. Flashback Data Archive ( Oracle Total Recall ) introduced in 11g

    Flashback Data Archive feature is part of Oracle Total Recall technology. Flashback Data Archive fea ...

  9. Oracle Flashback 闪回

    Oracle 的闪回技术是一种数据恢复技术,仅能对用户逻辑错误进行恢复, 闪回针对的是提交commit的事务,没有提交的事务,使用rollback 1.闪回版本查询 Flashback Version ...

随机推荐

  1. unity transform 常用操作

    1.寻找物体 1.1 寻找满足条件的子物体 ` public static Transform FindObj(Transform transform, Func<Transform, bool ...

  2. SAP MM 采购ERP顾问咨询费限制总金额的框架协议实现方案

    SAP MM 采购ERP顾问咨询费限制总金额的框架协议实现方案 [业务场景] 采购部门与ERP咨询公司签订了一个框架协议,只规定不同级别顾问的人天费用,不限定这些不同级别咨询顾问的具体采购的人天数,但 ...

  3. 自定义修改Anaconda Jupyterlab Home目录

    自定义修改Anaconda Jupyterlab Home目录 最近在使用Anaconda学习数据分析和机器学习,会使用到Jupyter,但是他默认目录是用户的目录,我并没有习惯将项目和资料放在C盘, ...

  4. android 权限库EasyPermissions

    文章链接:https://mp.weixin.qq.com/s/H63Sn03xV0JoINXB4SWWKA 众所周知,在android 6.0之后,如果应用程序需要危险权限,则用户必须明确向应用授予 ...

  5. typescript中的泛型

    泛型:软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性. 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能. 在像C#和Ja ...

  6. 【Linux】【MySQL】CentOS7、MySQL8.0.13 骚操作速查笔记——专治各种忘词水土不服

    1.前言 [Linux][MySQL]CentOS7安装最新版MySQL8.0.13(最新版MySQL从安装到运行) 专治各种忘词,各种水土不服. - -,就是一个健忘贵的速查表:(当然不包括SQL的 ...

  7. 逻辑回归&线性支持向量机

    代码: # -*- coding: utf-8 -*- """ Created on Tue Jul 17 10:13:20 2018 @author: zhen &qu ...

  8. C学习笔记(自增)

    自增 (1)后缀:与Turbo C相同,在语句结束之前或者说分号之前才会执行自增. (2)前缀: 前两个自增统一取值,后面的自增即为取值. int i=2,j; j=++i+(++i)+(++i); ...

  9. RubyGems系列之RubyGems初识

    转载请标明来源:https://www.cnblogs.com/zhanggui/p/9719291.html 一. 基础理解 RubyGems简称gems,它是一个用于对Ruby组件进行打包的Rub ...

  10. mongoDB概述

    mongoDB介绍 是一个开源的文档数据库,基于分布式文件存储的数据库.由 C++ 语言编写,并领先的 NoSQL 数据库(非关系型数据库)MongoDB 是由 c++语言编写. MongoDB 是一 ...