题链:

http://acm.hdu.edu.cn/showproblem.php?pid=6021

题解:

题意:
对于一个长度为 N的由小写英文字母构成的随机字符串,
当它进行一次变换,所有字符 i 都会变成a[i]。
同时变换数组:a[i]是26个字母组成的排列。
现在需要知道这个随机串变换到自身的期望变换次数。
请你输出期望答案乘上26^N以后模 1000000007的结果。


容斥,LCM
其实题目要求的就是每种串(共有 26^N种串)回到自身的变化次数之和。

暴力求法就是:
看每种串的每个字符在循环长度为多少的循环里(设第i个位置的字符的循环长度为 Di),
则该串的变化次数为 LCM(D1,D2,D3...,DN)(最小公倍数)

不难发现,对于给定的变化数组 a[ ],循环长度不同的循环节的种类个数不超过 6 个(1+2+3+4+5+6+7>26)
6很小,所以就可以在这个 "6" 上面搞事情。

枚举循环节的集合 S,表示串里的字符只能是这些循环节的字母集合里的字母
就是把 N 个字符放到那些循环节的字母集合中去。
(假设这个集合的循环节只包含了 W 个字母)
但是我们要使得串的变化次数为 LCM(Di, ${i}\epsilon{S}$ ),(即答案为这些循环节长度的 LCM)
那么每个循环节里面都至少要有一个字符被在里面。
所以问题转化为:N个东西分到 M 个盒子,每个盒子都至少有一个东西。
求法如下:
设 f[S] 表示在 S集合的循环节里随便放的方案数,即每个字符可以随便选择 W 个字母里面的任意一个。
显然 f[S] = $W^N$。但是这个 f[S] 有非法方案,即存在某些循环节里没有放字符。
所以容斥如下:
ANS = 没有涵盖至少 0个循环节的方案数(即f[S])
          -没有涵盖至少 1个循环节的方案数
          +没有涵盖至少 2个循环节的方案数
          -...+... 
用于容斥的方案数就直接枚举 S 的子集 _S,(方案数即为 f[_S])。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define _ % mod
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mod=1000000007;
int f[100],vis[100],d[100],g[100],h[100],tot;;
char S[100];
int T,N,ANS;
int gcd(int a,int b){
while(b^=a^=b^=a%=b);
return a;
}
int pow(int a,int b){
int now=1;
while(b){
if(b&1) now=(1ll*now*a)_;
a=(1ll*a*a)_; b>>=1;
}
return now;
}
void precircle(){
tot=0;
scanf("%d",&N);
scanf("%s",S+1);
memset(d,0,sizeof(d));
memset(h,0,sizeof(h));
memset(vis,0,sizeof(vis));
for(int i=1;i<=26;i++)
if(!vis[S[i]-'a'+1]){
int tmp=0,p=S[i]-'a'+1;
while(!vis[p]) tmp++,vis[p]=1,p=S[p]-'a'+1;
d[tmp]++;
}
for(int i=1;i<=26;i++)
if(d[i]) tot++,g[tot]=d[i],d[tot]=i;
for(int s=1,cnt;cnt=0,s<(1<<tot);s++){
for(int i=1;i<=tot;i++)
if(s&(1<<(i-1)))
cnt+=g[i]*d[i],h[s]++;
f[s]=pow(cnt,N);
}
/*for(int s=1,tmp;s<(1<<tot);s++){
for(int _s=s;_s;_s=(_s-1)&s){
if(s==_s) continue;
tmp=-f[_s];
tmp=(1ll*tmp+mod)_;
f[s]=(1ll*f[s]+tmp+mod)_;
}
}正推就不用容斥了*/
for(int s=1,tmp;s<(1<<tot);s++){
for(int _s=s;_s;_s=(_s-1)&s){
if(s==_s) continue;
tmp=-f[_s];
tmp=(1ll*tmp+mod)_;
f[s]=(1ll*f[s]+tmp+mod)_;
}
}//逆推需要容斥
}
void dfs(int p,int s,int lcm){
if(p==tot+1){
ANS=(1ll*ANS+(1ll*f[s]*lcm)_)_;
return;
}
dfs(p+1,s,lcm);
dfs(p+1,s|(1<<(p-1)),1ll*lcm/gcd(lcm,d[p])*d[p]);
}
int main()
{
scanf("%d",&T);
while(T--){
ANS=0;
precircle();
dfs(1,0,1);
printf("%d\n",ANS);
}
return 0;
}

●HDU 6021 MG loves string的更多相关文章

  1. hdu 6021 MG loves string

    MG loves string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others ...

  2. hdu 6021 MG loves string (一道容斥原理神题)(转)

    MG loves string    Accepts: 30    Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  3. 【HDU 6021】 MG loves string (枚举+容斥原理)

    MG loves string  Accepts: 30  Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: ...

  4. MG loves string

    MG loves string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others ...

  5. hdu 6020 MG loves apple 恶心模拟

    题目链接:点击传送 MG loves apple Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Ja ...

  6. hdu6021[BestCoder #93] MG loves string

    这场BC实在是有趣啊,T2是个没有什么算法但是细节坑的贪心+分类讨论乱搞,T3反而码起来很顺. 然后出现了T2过的人没有T3多的现象(T2:20人,T3:30人),而且T2的AC率是惨烈的不到3% ( ...

  7. 【HDU 6020】 MG loves apple (乱搞?)

    MG loves apple  Accepts: 20  Submissions: 693  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit: ...

  8. best corder MG loves gold

    MG loves gold  Accepts: 451  Submissions: 1382  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit ...

  9. Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) (C++,Java)

    Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) Hdu 5806 题意:给出一个数组,求区间第k大的数大于等于m的区间个数 #include<queue> # ...

随机推荐

  1. 201421123042 《Java程序设计》第2周学习总结

    1. 本周学习总结 以几个关键词描述本周的学习内容.并将关键词之间的联系描述或绘制出来. 原则:少而精,自己写.即使不超过5行也可,但请一定不要简单的复制粘贴. 引用类型 引用类型是指向一个对象,感觉 ...

  2. EasyUI 中datagrid 分页。

    注释:datagrid分页搞了好几天才完全搞好,网上没完全的资料.明天晚上贴代码. 睡觉.

  3. JAVA_SE基础——66.StringBuffer类 ③

    如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 容器的具备 的行为 常用方法 String  增加 ap ...

  4. JAVA_SE基础——12.运算符的优先级

    优先级 操作符 含义 关联性 用法 ---------------------------------------------------------------- 1 [ ] 数组下标 左 arra ...

  5. 微信开发之SVN提交代码与FTP同步到apache的根目录

    SVN是协同开发的,版本控制器,就是几个人同时开发,可以提交代码到SVN服务器,这样就可以协同开发,一般是早上上班首先更新下代码,然后自己修改代码 工作一天之后,修改代码之后,下班之前,更新代码,然后 ...

  6. Java基础类库简介

    Java基础类库简介 一.常用的基础类库:11个jar(Java Archive,Java归档)包 作为java语言使用者,我们可以感受到java语言带来的优势(平台无关.面向对象.多线程.高效易扩展 ...

  7. 从一个事件绑定说起 - DOM

    事件绑定的方式 给 DOM 元素绑定事件分为两大类:在 html 中直接绑定 和 在 JavaScript 中绑定. Bind in HTML 在 HTML 中绑定事件叫做内联绑定事件,HTML 的元 ...

  8. 开源软件:NoSql数据库 - 图数据库 Cassandra

    转载原文:http://www.cnblogs.com/loveis715/p/5299495.html Cassandra简介 在前面的一篇文章<图形数据库Neo4J简介>中,我们介绍了 ...

  9. Spring Security 入门(1-6-2)Spring Security - 内置的filter顺序、自定义filter、http元素和对应的filterChain

    Spring Security 的底层是通过一系列的 Filter 来管理的,每个 Filter 都有其自身的功能,而且各个 Filter 在功能上还有关联关系,所以它们的顺序也是非常重要的. 1.S ...

  10. EasyUI中datagrid的基本用法

    EasyUI中datagrid是最常用的一个控件了,现在整理一下datagrid的基本语法,先展示下页面效果吧,如下图