[BZOJ]1046 上升序列(HAOI2007)
和字典序有关的题型啊。
Description
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且(ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
Input
第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。
Output
对于每个询问,如果对应的序列存在,则输出,否则打印Impossible。
Sample Input
6
3 4 1 2 3 6
3
6
4
5
Sample Output
Impossible
1 2 3 6
Impossible
HINT
N<=10000,M<=1000。
Solution
看到字典序和上升子序列DP,小C想起了APIO2009的那道convention。
(不要吐槽小C的做题顺序)
既然要取字典序最小的,那肯定就是从小的取起,能取就取。
那什么情况算是能取的呢?
设要取的上升序列长度为len,已经取了x个数,且最后一个数大小为last。
设我们当前要取的数的位置为i,数的大小为a[i],以这个位置开头的最长上升子序列长度为d[i]。
那么如果a[i]>last且d[i]+x>=len那么i这个位置的数就能取,也就是必须取。
我们来分析为什么这两个条件可以决定这个数取不取。
a[i]>last是上升序列的必要条件,我们已经满足了last必须取,且上一个取last一定能构造出答案,所以从字典序最小的角度来说,我们不能用a[i]来替换last。
d[i]+x>=len则是能构造出长度为len的答案的充分条件,因为d[i]满足二分性,如果d[i]>=len-x,那么一定存在一个以a[i]开头长度为len-x的上升序列接在last后面,从字典序最小的角度来说,我们取它显然最优。
剩下就是求d[i]了嘛。求最长上升子序列谁不会啊?
其实是正常的字典序也好,还是这题的逗比字典序也好,用以上的思路都是可以做的。
时间复杂度O(nlogn+n*m)。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MN 10005
#define MM 1005
using namespace std;
struct meg{int val,pos;}b[MM];
int f[MN],a[MN],p[MN],lb[MM],ans[MM][MN],t[MN<<];
int nin,n,m,MQ; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} void dfs(int depth,int x,int L,int R,int ps)
{
register int i,j,dx,mx=L-;
for (i=x;i<=n;++i)
{
if (a[i]<=ps) continue;
dx=lower_bound(lb+,lb+m+,f[i]+depth)-lb-;
if (dx>mx)
{
for (j=mx+;j<=dx;++j) ans[b[j].pos][depth]=a[i],mx=lb[j]==depth?j:mx;
if (dx>mx) {dfs(depth+,i+,mx+,dx,a[i]); mx=dx;}
if (mx==R) break;
}
}
} inline void getad(int x,int z) {for (x+=MQ;x&&z>t[x];x>>=) t[x]=z;}
inline int getmx(int L,int R)
{
if (L>R) return ;
register int lt=;
for (L+=MQ,R+=MQ;L<=R;L>>=,R>>=)
{
if ( L&) lt=max(lt,t[L++]);
if (~R&) lt=max(lt,t[R--]);
}
return lt;
}
bool cmp(const meg& a,const meg& b) {return a.val<b.val;} int main()
{
register int i,j;
n=read();
for (i=;i<=n;++i) a[i]=p[i]=read();
sort(p+,p+n+);
nin=unique(p+,p+n+)-p-;
for (i=;i<=n;++i) a[i]=lower_bound(p+,p+nin+,a[i])-p;
for (MQ=;MQ<nin;MQ<<=); --MQ;
for (i=n;i;--i) f[i]=getmx(a[i]+,nin)+,getad(a[i],f[i]);
m=read();
for (i=;i<=m;++i) b[i].val=read(),b[i].pos=i;
sort(b+,b+m+,cmp);
for (i=;i<=m;++i) lb[i]=b[i].val;
dfs(,,,m,);
for (i=;i<=m;++i)
{
if (!ans[i][]) {puts("Impossible"); continue;}
printf("%d",p[ans[i][]]);
for (j=;ans[i][j];++j) printf(" %d",p[ans[i][j]]); puts("");
}
}
Last Word
不知道为什么突然想把询问排序然后一起做想降低常数,不过常数好像更大了233。
因为看错字典序的缘故,小C的代码画风有点崩坏……(其实本来就很崩)
[BZOJ]1046 上升序列(HAOI2007)的更多相关文章
- BZOJ 1046 上升序列
Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...
- BZOJ 1046 上升序列(LIS变形)
要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于 ...
- 【BZOJ】【1046】【HAOI2007】上升序列
DP+贪心 啊……其实是个水题,想的复杂了 令f[i]表示以 i 为起始位置的最长上升子序列的长度,那么对于一个询问x,我们可以贪心地从前往后扫,如果f[i]>=x && a[i ...
- [BZOJ 1046] [HAOI2007] 上升序列 【DP】
题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最 ...
- BZOJ 1046 最长不降子序列(nlogn)
nlogn的做法就是记录了在这之前每个长度的序列的最后一项的位置,这个位置是该长度下最后一个数最小的位置.显然能够达到最优. BZOJ 1046中里要按照字典序输出序列,按照坐标的字典序,那么我萌可以 ...
- [BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)
[BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个 ...
- (WAWAWAWAWAWA) BZOJ 1858: [Scoi2010]序列操作
二次联通门 : BZOJ 1858: [Scoi2010]序列操作 /* BZOJ 1858: [Scoi2010]序列操作 已经... 没有什么好怕的的了... 16K的代码... 调个MMP啊.. ...
- BZOJ 1046: [HAOI2007]上升序列 LIS -dp
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3438 Solved: 1171[Submit][Stat ...
- 【BZOJ 1046】 1046: [HAOI2007]上升序列
1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...
随机推荐
- JAVAGUI设计步骤
①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...
- C# 封装miniblink 使用HTML/CSS/JS来构建.Net 应用程序界面和简易浏览器
MiniBlink的作者是 龙泉寺扫地僧 miniblink是什么? (抄了一下 龙泉寺扫地僧 写的简洁) Miniblink是一个全新的.追求极致小巧的浏览器内核项目,其基于chromium最新 ...
- 关于搭建MyBatis框架(二)
由于在[关于使用Mybatis的使用说明(一)http://www.cnblogs.com/zdb292034/p/8675766.html]中存在不太完善地方,通过此片文档进行修订: 阅读指南:(1 ...
- lamp环境搭建经验总结
环境:centos6.4,13个源码包:参考教程高罗峰细说php思路:1.首先确定gcc,g++的安装,因为这是c语言的编译工具,没有它,源码不可能安装,redhat的yum需要配置,分为本地源和网络 ...
- js解决IE8不支持html5,css3的问题(respond.js 的使用注意)
IE8.0及以下不支持html5,css3的解析.目前为止IE8以下的版本使用率在10%左右,网站还是有必要兼容的. 1,在你的所有css最后判断引入两个js文件. html5.js 是用来让ie8 ...
- WPF treeview扩展
记录一下工作中遇到的问题,以便以后忘记了可以来看. 在工作中遇到一个问题,就是要实现类型如下的界面,没有使用Telerik和Dev库.本来最开始是想使用Datagrid,但不知道怎么实现treevie ...
- Python内置函数(31)——object
英文文档: class objectReturn a new featureless object. object is a base for all classes. It has the meth ...
- istio入门(01)istio是什么?
- html5shiv.js和respond.min.js的作用
html5shiv:解决ie9以下浏览器对html5新增标签的不识别,并导致CSS不起作用的问题. respond.min:让不支持css3 Media Query的浏览器包括IE6-IE8等其他浏览 ...
- Linux将端口设置进防火墙的白名单
1.先检查linux服务器的端口是否被防火墙拦住 `telnet 172.168.1.101 8080后面跟端口号,如果连接上证明是防火墙白名单.如果没有配置 vi /etc/sysconfig/ip ...