和字典序有关的题型啊。

Description

  对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且(ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

  第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。

Output

  对于每个询问,如果对应的序列存在,则输出,否则打印Impossible。

Sample Input

  6
  3 4 1 2 3 6
  3
  6
  4
  5

Sample Output

  Impossible
  1 2 3 6
  Impossible

HINT

  N<=10000,M<=1000。

Solution

  看到字典序和上升子序列DP,小C想起了APIO2009的那道convention。

  (不要吐槽小C的做题顺序)

  既然要取字典序最小的,那肯定就是从小的取起,能取就取。

  那什么情况算是能取的呢?

  设要取的上升序列长度为len,已经取了x个数,且最后一个数大小为last。

  设我们当前要取的数的位置为i,数的大小为a[i],以这个位置开头的最长上升子序列长度为d[i]。

  那么如果a[i]>last且d[i]+x>=len那么i这个位置的数就能取,也就是必须取。

  我们来分析为什么这两个条件可以决定这个数取不取。

    a[i]>last是上升序列的必要条件,我们已经满足了last必须取,且上一个取last一定能构造出答案,所以从字典序最小的角度来说,我们不能用a[i]来替换last。

    d[i]+x>=len则是能构造出长度为len的答案的充分条件,因为d[i]满足二分性,如果d[i]>=len-x,那么一定存在一个以a[i]开头长度为len-x的上升序列接在last后面,从字典序最小的角度来说,我们取它显然最优。

  剩下就是求d[i]了嘛。求最长上升子序列谁不会啊?

  其实是正常的字典序也好,还是这题的逗比字典序也好,用以上的思路都是可以做的。

  时间复杂度O(nlogn+n*m)。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MN 10005
#define MM 1005
using namespace std;
struct meg{int val,pos;}b[MM];
int f[MN],a[MN],p[MN],lb[MM],ans[MM][MN],t[MN<<];
int nin,n,m,MQ; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} void dfs(int depth,int x,int L,int R,int ps)
{
register int i,j,dx,mx=L-;
for (i=x;i<=n;++i)
{
if (a[i]<=ps) continue;
dx=lower_bound(lb+,lb+m+,f[i]+depth)-lb-;
if (dx>mx)
{
for (j=mx+;j<=dx;++j) ans[b[j].pos][depth]=a[i],mx=lb[j]==depth?j:mx;
if (dx>mx) {dfs(depth+,i+,mx+,dx,a[i]); mx=dx;}
if (mx==R) break;
}
}
} inline void getad(int x,int z) {for (x+=MQ;x&&z>t[x];x>>=) t[x]=z;}
inline int getmx(int L,int R)
{
if (L>R) return ;
register int lt=;
for (L+=MQ,R+=MQ;L<=R;L>>=,R>>=)
{
if ( L&) lt=max(lt,t[L++]);
if (~R&) lt=max(lt,t[R--]);
}
return lt;
}
bool cmp(const meg& a,const meg& b) {return a.val<b.val;} int main()
{
register int i,j;
n=read();
for (i=;i<=n;++i) a[i]=p[i]=read();
sort(p+,p+n+);
nin=unique(p+,p+n+)-p-;
for (i=;i<=n;++i) a[i]=lower_bound(p+,p+nin+,a[i])-p;
for (MQ=;MQ<nin;MQ<<=); --MQ;
for (i=n;i;--i) f[i]=getmx(a[i]+,nin)+,getad(a[i],f[i]);
m=read();
for (i=;i<=m;++i) b[i].val=read(),b[i].pos=i;
sort(b+,b+m+,cmp);
for (i=;i<=m;++i) lb[i]=b[i].val;
dfs(,,,m,);
for (i=;i<=m;++i)
{
if (!ans[i][]) {puts("Impossible"); continue;}
printf("%d",p[ans[i][]]);
for (j=;ans[i][j];++j) printf(" %d",p[ans[i][j]]); puts("");
}
}

Last Word

  不知道为什么突然想把询问排序然后一起做想降低常数,不过常数好像更大了233。

  因为看错字典序的缘故,小C的代码画风有点崩坏……(其实本来就很崩)

[BZOJ]1046 上升序列(HAOI2007)的更多相关文章

  1. BZOJ 1046 上升序列

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  2. BZOJ 1046 上升序列(LIS变形)

    要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于 ...

  3. 【BZOJ】【1046】【HAOI2007】上升序列

    DP+贪心 啊……其实是个水题,想的复杂了 令f[i]表示以 i 为起始位置的最长上升子序列的长度,那么对于一个询问x,我们可以贪心地从前往后扫,如果f[i]>=x && a[i ...

  4. [BZOJ 1046] [HAOI2007] 上升序列 【DP】

    题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最 ...

  5. BZOJ 1046 最长不降子序列(nlogn)

    nlogn的做法就是记录了在这之前每个长度的序列的最后一项的位置,这个位置是该长度下最后一个数最小的位置.显然能够达到最优. BZOJ 1046中里要按照字典序输出序列,按照坐标的字典序,那么我萌可以 ...

  6. [BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)

    [BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个 ...

  7. (WAWAWAWAWAWA) BZOJ 1858: [Scoi2010]序列操作

    二次联通门 : BZOJ 1858: [Scoi2010]序列操作 /* BZOJ 1858: [Scoi2010]序列操作 已经... 没有什么好怕的的了... 16K的代码... 调个MMP啊.. ...

  8. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  9. 【BZOJ 1046】 1046: [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...

随机推荐

  1. visualVM使用jstatd和jmx连接远程jvm及遇到的问题解决

    visualVM使用jstatd和jmx连接远程jvm及遇到的问题解决 JMX方式: 编辑Tomact里bin目录的catalina.sh . 在其头部加入 JAVA_OPTS=" -Dco ...

  2. Ubuntu 17.10.1安装, 定制

    p { margin-bottom: 0.25cm; line-height: 120% } a:link { } 2018.4.7 Ubuntu 17.10.1安装, 定制, 后续搭建LAMP环境 ...

  3. iot会议纪要 20180105

    1.需求概述设备 <-->物接入 <--> 云端认证授权协议解析主题 端点endpoint(地址)->设备thing(用户)->身份principal(密码)-&g ...

  4. 新概念英语(1-15)Your passports please

    Is there a problem wtih the Customers officer? A:Are you Swedish? B:No. We are not. We are Danish. A ...

  5. spring-oauth-server实践:授权方式四:client_credentials 模式下有效期内重复申请 access_token ?

    spring-oauth-server入门(1-12)授权方式四:client_credentials 模式下有效期内重复申请 access_token ? 一.失效重建邏輯 二.如果沒有失效,不会重 ...

  6. Lintcode373 Partition Array by Odd and Even solution 题解

    [题目描述] Partition an integers array into odd number first and even number second. 分割一个整数数组,使得奇数在前偶数在后 ...

  7. Java-NIO(一):简介

    Java NIO简介: Java New IO Non Blocking IO,从java1.4版本就开始引入了新的IO API,可以替代标准的Java IO API.NIO与原来的IO有同样的作用和 ...

  8. 设置python爬虫IP代理(urllib/requests模块)

    urllib模块设置代理 如果我们频繁用一个IP去爬取同一个网站的内容,很可能会被网站封杀IP.其中一种比较常见的方式就是设置代理IP from urllib import request proxy ...

  9. ASP.NET Core + Docker + Jenkins + gogs + CentOS 从零开始搭建持续集成

    为什么不用gitlab? 没有采用gitlab,因为gitlab比较吃配置,至少得2核4G的配置.采用go语言开发的gogs来代替,搭建方便(不到10分钟就能安装完成),资源消耗低,功能也比较强大,也 ...

  10. [LeetCode] Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...