●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4596
题解:
容斥,矩阵树定理,矩阵行列式
先说说容斥:(一共有 N-1个公司)
令 f[i] 表示选出 (N-1)-i 个公司来修路(即有i个公司一定不修),且不管每个公司只能修一条路这一限制的方案数。
那么 答案 ANS=0个公司不修的方案数 - 1个公司不修的方案数 +2个公司不修的翻案数 ...
即 ANS= f[0] - f[1] +f[2] - ... + (-1)i*f[i]
f[i]的求法呢,就是先O(2N)枚举公司集合情况,
然后用矩阵树定理 O(N3) 求出当前情况下的生成树方案数。
另外再本题中,在构造上三角矩阵用以求行列式时,
既要避免小数,还要不影响原矩阵的行列式的值,
所以采用辗转相除的高斯消元法去构造上三角矩阵。复杂度多一个(logN)
由矩阵行列式的性质可知,这样辗转相除的高斯消元法不会影响行列式的绝对值,
只会影响符号位的正负,所以统计一下正负号的变化就好了。
(还不会矩阵树定理,看看这里,入门一波。)
所以总的时间复杂度为 O(2N*N3*logN)。
(都是这个复杂度,不晓得为什么我的代码跑到这么慢,都垫底了......)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define add(x,y) (((1ll*(x)+(y))%mod+mod)%mod)
#define mul(x,y) (((1ll*(x)*(y))%mod+mod)%mod)
#define filein(x) freopen(#x".in","r",stdin)
#define fileout(x) freopen(#x".out","w",stdout)
using namespace std;
const int mod=1000000007;
struct Matrix{
int Val[20][20],*X[20],R,C;
void Init(int r,int c){//r==c
R=r; C=c;
memset(Val,0,sizeof(Val));
for(int i=1;i<=R;i++) X[i]=Val[i];
}
void Modify(int r,int c,int v){
X[r][c]=add(X[r][c],v);
}
void operator =(const Matrix &rtm){
Init(rtm.R,rtm.C);
for(int i=1;i<=R;i++)
for(int j=1;j<=C;j++)
Val[i][j]=rtm.X[i][j];
}
Matrix operator -(const Matrix & rtm) const{
Matrix now; now=*this;
for(int i=1;i<=R;i++)
for(int j=1;j<=C;j++)
now.X[i][j]=add(now.X[i][j],-rtm.X[i][j]);
return now;
}
void Gauss_Euclidean(int p,int &ti){//形成上三角矩阵
if(p==R-1) return;
if(!X[p][p])
for(int i=p+1;i<R;i++) if(X[i][p]){
swap(X[i],X[p]); ti++; break;
}
if(!X[p][p]) return;
for(int i=p+1;i<R;i++){
while(X[i][p]){
int t=X[p][p]/X[i][p];
for(int j=p;j<R;j++)
X[p][j]=add(X[p][j],-mul(X[i][j],t));
swap(X[p],X[i]); ti++;
}
}
Gauss_Euclidean(p+1,ti);
}
int Determinant(){
int ti=0,ans=1;
Gauss_Euclidean(1,ti);
for(int i=1;i<R;i++) ans=mul(ans,X[i][i]);
if(ti&1) ans=mul(ans,-1);
return ans;
}
void print(){
for(int i=1;(i!=1?printf("\n"):0),i<=R;i++)
for(int j=1;j<=R;j++)
printf("%d ",X[i][j]);
}
}A,B,K;
int cpy[20][500];
int ANS,N,tmp;
void dfs(int p,int num){
if(p>=N) return;
//选
for(int i=1,a,b;i<=2*cpy[p][0];i+=2){
a=cpy[p][i]; b=cpy[p][i+1];
A.Modify(a,a,1); A.Modify(b,b,1);
B.Modify(a,b,1); B.Modify(b,a,1);
}
K=A-B; tmp=K.Determinant();
if(((N-1)-(num+1))&1) tmp=mul(tmp,-1);
ANS=add(ANS,tmp);
dfs(p+1,num+1);
//不选
for(int i=1,a,b;i<=2*cpy[p][0];i+=2){
a=cpy[p][i]; b=cpy[p][i+1];
A.Modify(a,a,-1); A.Modify(b,b,-1);
B.Modify(a,b,-1); B.Modify(b,a,-1);
}
dfs(p+1,num);
}
int main()
{
scanf("%d",&N);
A.Init(N,N); B.Init(N,N);
for(int i=1;i<=N-1;i++){
scanf("%d",&cpy[i][0]);
for(int j=1;j<=2*cpy[i][0];j++)
scanf("%d",&cpy[i][j]);
}
dfs(1,0);
printf("%d",ANS);
return 0;
}
●BZOJ 4596 [Shoi2016]黑暗前的幻想乡的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- 【BZOJ】4596: [Shoi2016]黑暗前的幻想乡
[题意]给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数.n<=17. [算法]容斥原理+生成树计数(矩阵树定理) [题解]每个生成树方案是一个公司有无修路 ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
随机推荐
- 2017-2018-1 Java演绎法 第二周 作业
团队任务:讨论Android上的游戏软件 参考现代软件工程 第一章 [概论]练习与讨论: 软件有很多种,也有各种分类办法,本次团队任务是讨论选取Android上的一个游戏软件,考虑到每位组员接触的游戏 ...
- Linux kernel 的 sendfile 是如何提高性能的
Linux kernel 的 sendfile 是如何提高性能的 现在流行的 web 服务器里面都提供 sendfile 选项用来提高服务器性能,那到底 sendfile 是什么,怎么影响性能的呢? ...
- 玩转Leveldb原理及源码--拙见1
可以说是不知天高地厚.. 可以说是班门弄斧.. 但是,我今天还就这样走了,我喜欢!!!!!! 注:后续文章,限于篇幅,不懂名词都有 紫色+下划线 超链接,有兴趣,可以查阅: 网上关于Leveldb 的 ...
- SQL的介绍及MySQL的安装
基础篇 - SQL 介绍及 MySQL 安装 SQL的介绍及MySQL的安装 课程介绍 本课程为实验楼提供的 MySQL 实验教程,所有的步骤都在实验楼在线实验环境中完成, ...
- Flask 学习 五 电子邮件
pip install mail from flask_mail import Mail # 邮件配置 app.config['MAIL_SERVER']='smtp.qq.com' app.conf ...
- 【iOS】swift-如何理解 if let 与guard?
著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者:黄兢成 链接:http://www.zhihu.com/question/36448325/answer/68614858 ...
- JDBC操作数据库的三种方式比较
JDBC(java Database Connectivity)java数据库连接,是一种用于执行上sql语句的javaAPI,可以为多种关系型数据库提供统一访问接口.我们项目中经常用到的MySQL. ...
- selenium在页面中多个fream的定位
在做页面元素定位的时候,遇到多fream的页面定位比较困难,需要先去切换到元素所在的fream才能成功定位. 1,切换到目标fream: driver.switch_to.frame('freamID ...
- angular4学习笔记整理(二)angular4的路由使用
这章说一下angular的路由 先说angular路由怎么引入,一开始new出来的angular项目它路由帮你配好了,但看要看app.module.ts里面 1.首先最上面要引入路由模块 import ...
- HRBUST1522【单调队列+DP】
题目:输入一个长度为n的整数序列(A1,A2,--,An),从中找出一段连续的长度不超过m的子序列,使得这个子序列的和最大. #include<stdio.h> #include<s ...