Jetson TX2上的demo

一、快速傅里叶-海动图 sample

The CUDA samples directory is copied to the home directory on the device by JetPack. The built binaries are in the following directory:

/home/ubuntu/NVIDIA_CUDA-<version>_Samples/bin/armv7l/linux/release/gnueabihf/

这里的version需要看你自己安装的CUDA版本而定

Run the samples at the command line or by double-clicking on them in the file browser. For example, when you run the oceanFFT sample, the following screen is displayed.

二、车辆识别加框sample

nvidia@tegra-ubuntu:~/tegra_multimedia_api/samples/backend$

./backend 1 ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264

--trt-deployfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt

--trt-modelfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel --trt-forcefp32 0 --trt-proc-interval 1 -fps 10

三、GEMM(通用矩阵乘法)测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/7_CUDALibraries/batchCUBLAS$ ./batchCUBLAS -m1024 -n1024 -k1024

batchCUBLAS Starting...

GPU Device 0: "NVIDIA Tegra X2" with compute capability 6.2

==== Running single kernels ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.00372291 sec  GFLOPS=576.83@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.10940003 sec  GFLOPS=19.6296@@@@ dgemm test OK

==== Running N=10 without streams ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x00000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03462315 sec  GFLOPS=620.245@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09212208 sec  GFLOPS=19.6634@@@@ dgemm test OK

==== Running N=10 with streams ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x40000000, 2) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03504515 sec  GFLOPS=612.776@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09177494 sec  GFLOPS=19.6697@@@@ dgemm test OK

==== Running N=10 batched ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x3f800000, 1) beta= (0xbf800000, -1)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03766394 sec  GFLOPS=570.17@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09389901 sec  GFLOPS=19.6315@@@@ dgemm test OK

Test Summary0 error(s)

四、内存带宽测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/bandwidthTest$ ./bandwidthTest

[CUDA Bandwidth Test] - Starting...

Running on...

Device 0: NVIDIA Tegra X2

Quick Mode

Host to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            20215.8

Device to Host Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            20182.2

Device to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            35742.8

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

五、设备查询

nvidia@tegra-ubuntu:~/work/TensorRT/tmp/usr/src/tensorrt$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ls

deviceQuery  deviceQuery.cpp  deviceQuery.o  Makefile  NsightEclipse.xml  readme.txt

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA Tegra X2"

CUDA Driver Version / Runtime Version          8.0 / 8.0

CUDA Capability Major/Minor version number:    6.2

Total amount of global memory:                 7851 MBytes (8232062976 bytes)

( 2) Multiprocessors, (128) CUDA Cores/MP:     256 CUDA Cores

GPU Max Clock rate:                            1301 MHz (1.30 GHz)

Memory Clock rate:                             1600 Mhz

Memory Bus Width:                              128-bit

L2 Cache Size:                                 524288 bytes

Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers

Total amount of constant memory:               65536 bytes

Total amount of shared memory per block:       49152 bytes

Total number of registers available per block: 32768

Warp size:                                     32

Maximum number of threads per multiprocessor:  2048

Maximum number of threads per block:           1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch:                          2147483647 bytes

Texture alignment:                             512 bytes

Concurrent copy and kernel execution:          Yes with 1 copy engine(s)

Run time limit on kernels:                     No

Integrated GPU sharing Host Memory:            Yes

Support host page-locked memory mapping:       Yes

Alignment requirement for Surfaces:            Yes

Device has ECC support:                        Disabled

Device supports Unified Addressing (UVA):      Yes

Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = NVIDIA Tegra X2Result = PASS

六、大型项目的测试

详情查看https://developer.nvidia.com/embedded/jetpack

这里面还有一些项目

Jetson TX2上的demo(原创)的更多相关文章

  1. 在Jetson TX2上显示摄像头视频并使用python进行caffe推理

    参考文章:How to Capture Camera Video and Do Caffe Inferencing with Python on Jetson TX2 与参考文章大部分都是相似的,如果 ...

  2. 在Jetson TX2上捕获、显示摄像头视频

    参考文章:How to Capture and Display Camera Video with Python on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下 ...

  3. 在Jetson TX2上安装caffe和PyCaffe

    caffe是Nvidia TensorRT最支持的深度学习框架,因此在Jetson TX2上安装caffe很有必要.顺便说一句,下面的安装是支持python3的. 先决条件 在Jetson TX2上完 ...

  4. 在Jetson TX2上安装OpenCV(3.4.0)

    参考文章:How to Install OpenCV (3.4.0) on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下面的描述 在我们使用python3进行编程时 ...

  5. Jetson TX2安装tensorflow(原创)

    Jetson TX2安装tensorflow 大致分为两步: 一.划分虚拟内存 原因:Jetson TX2自带8G内存这个内存空间在安装tensorflow编译过程中会出现内存溢出引发的安装进程奔溃 ...

  6. Jetson TX2 安装JetPack3.3教程

    Jetson TX2 刷机教程(JetPack3.3版本) 参考网站:https://blog.csdn.net/long19960208/article/details/81538997 版权声明: ...

  7. 02-NVIDIA Jetson TX2 通过JetPack 3.1刷机完整版(踩坑版)

    未经允许,不得擅自改动和转载 文 | 阿小庆 2018-1-20 本文继第一篇文章:01-NVIDIA Jetson TX2开箱上电显示界面 TX2 出厂时,已经自带了 Ubuntu 16.04 系统 ...

  8. Jetson TX2火力全开

    Jetson Tegra系统的应用涵盖越来越广,相应用户对性能和功耗的要求也呈现多样化.为此NVIDIA提供一种新的命令行工具,可以方便地让用户配置CPU状态,以最大限度地提高不同场景下的性能和能耗. ...

  9. 在TX2上多线程读取视频帧进行caffe推理

    参考文章:Multi-threaded Camera Caffe Inferencing TX2之多线程读取视频及深度学习推理 背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或者传入视频文 ...

随机推荐

  1. dos命令的小总结

    DOS命令与批处理:目的:简单高效.为我们以后学习linux操作系统做准备进行DOS命令窗口: 运行---输入cmd主要包括目录操作类命令.磁盘操作类命令.文件操作类命令和其它命令 1.在d盘创建一个 ...

  2. Zabbix实战-简易教程(4)--Server端安装

    在数据库安装完成后,接着开始安装server端了.我们这里采用yum安装. 3.2.0 安装需求 ● PHP 5.6.18 ● curl 7.47.1 ● zabbix_server (Zabbix) ...

  3. [linux] C语言Linux系统编程-TCP通信的11种状态

    三次握手由client主动发出SYN请求, 此时client处于SYN_SENT状态(第一次握手)当server收到之后会由LISTEN转变为SYN_REVD状态, 并回复client, client ...

  4. java_web学习(八) jdbc连接mysql

    首先我们来看一下主机与数据库的关系图 实际上是两台服务器 一:下载数据库驱动jar包存放WebContent—WEB-INF—lib目录下 1.2步骤 1. 2. 3 4. 1.3 将jar包导入到W ...

  5. Mac 安装 Gradle

    首先下载 Gradle 通过官网进行下载 https://gradle.org 下载的文件名可能是 gradle-3.3-bin.zip 解压 将此文件解压到任意位置,如解压到 /usr/local ...

  6. linux(七)之linux系统中查找文件

    前面介绍一篇文章介绍了关于vi编辑器的使用,感觉是不是那么多的命令怎么记得住呀,小编也是这样让认为的,但是慢慢的发现,其实还是很有意思的.正所谓熟能生巧多练习,找到其中的规律就ok了.今天看到一句话让 ...

  7. Windows下MYSQL读取文件为NULL

    只记录解决问题的方法. mysql 版本: 5.7.18 问题: 在执行mysql 函数load_file时,该函数将加载指定文件的内容,存储至相应字段.如: SELECT LOAD_FILE(&qu ...

  8. 【Zigbee技术入门教程-号外】基于Z-Stack协议栈的抢答系统

    [Zigbee技术入门教程-号外]基于Z-Stack协议栈的抢答系统 广东职业技术学院  欧浩源 一.引言    2017年全国职业院校技能大赛"物联网技术应用"赛项中任务三题2的 ...

  9. Linux文件链接hard link与symbolic link

    Linux中文件链接有两种方式,一种是hard link,又称为硬链接:另一种是symbolic link,又称为符号链接.要区分两者的不同要回顾Linux常用的ext2文件系统.这种文件系统使用in ...

  10. MFC中自定义消息

    在头文件stdafx.h中增加一个自定义消息宏 #define WM_USER_THREADEND WM_USER + 1 在于增加新消息的窗口或对话框类的头文件中增加一个回调函数声明 afx_msg ...