Jetson TX2上的demo

一、快速傅里叶-海动图 sample

The CUDA samples directory is copied to the home directory on the device by JetPack. The built binaries are in the following directory:

/home/ubuntu/NVIDIA_CUDA-<version>_Samples/bin/armv7l/linux/release/gnueabihf/

这里的version需要看你自己安装的CUDA版本而定

Run the samples at the command line or by double-clicking on them in the file browser. For example, when you run the oceanFFT sample, the following screen is displayed.

二、车辆识别加框sample

nvidia@tegra-ubuntu:~/tegra_multimedia_api/samples/backend$

./backend 1 ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264

--trt-deployfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt

--trt-modelfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel --trt-forcefp32 0 --trt-proc-interval 1 -fps 10

三、GEMM(通用矩阵乘法)测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/7_CUDALibraries/batchCUBLAS$ ./batchCUBLAS -m1024 -n1024 -k1024

batchCUBLAS Starting...

GPU Device 0: "NVIDIA Tegra X2" with compute capability 6.2

==== Running single kernels ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.00372291 sec  GFLOPS=576.83@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.10940003 sec  GFLOPS=19.6296@@@@ dgemm test OK

==== Running N=10 without streams ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x00000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03462315 sec  GFLOPS=620.245@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09212208 sec  GFLOPS=19.6634@@@@ dgemm test OK

==== Running N=10 with streams ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x40000000, 2) beta= (0x40000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03504515 sec  GFLOPS=612.776@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09177494 sec  GFLOPS=19.6697@@@@ dgemm test OK

==== Running N=10 batched ====

Testing sgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x3f800000, 1) beta= (0xbf800000, -1)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 0.03766394 sec  GFLOPS=570.17@@@@ sgemm test OK

Testing dgemm#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)#### args: lda=1024 ldb=1024 ldc=1024

^^^^ elapsed = 1.09389901 sec  GFLOPS=19.6315@@@@ dgemm test OK

Test Summary0 error(s)

四、内存带宽测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/bandwidthTest$ ./bandwidthTest

[CUDA Bandwidth Test] - Starting...

Running on...

Device 0: NVIDIA Tegra X2

Quick Mode

Host to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            20215.8

Device to Host Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            20182.2

Device to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers

Transfer Size (Bytes)    Bandwidth(MB/s)

33554432            35742.8

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

五、设备查询

nvidia@tegra-ubuntu:~/work/TensorRT/tmp/usr/src/tensorrt$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ls

deviceQuery  deviceQuery.cpp  deviceQuery.o  Makefile  NsightEclipse.xml  readme.txt

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA Tegra X2"

CUDA Driver Version / Runtime Version          8.0 / 8.0

CUDA Capability Major/Minor version number:    6.2

Total amount of global memory:                 7851 MBytes (8232062976 bytes)

( 2) Multiprocessors, (128) CUDA Cores/MP:     256 CUDA Cores

GPU Max Clock rate:                            1301 MHz (1.30 GHz)

Memory Clock rate:                             1600 Mhz

Memory Bus Width:                              128-bit

L2 Cache Size:                                 524288 bytes

Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers

Total amount of constant memory:               65536 bytes

Total amount of shared memory per block:       49152 bytes

Total number of registers available per block: 32768

Warp size:                                     32

Maximum number of threads per multiprocessor:  2048

Maximum number of threads per block:           1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch:                          2147483647 bytes

Texture alignment:                             512 bytes

Concurrent copy and kernel execution:          Yes with 1 copy engine(s)

Run time limit on kernels:                     No

Integrated GPU sharing Host Memory:            Yes

Support host page-locked memory mapping:       Yes

Alignment requirement for Surfaces:            Yes

Device has ECC support:                        Disabled

Device supports Unified Addressing (UVA):      Yes

Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = NVIDIA Tegra X2Result = PASS

六、大型项目的测试

详情查看https://developer.nvidia.com/embedded/jetpack

这里面还有一些项目

Jetson TX2上的demo(原创)的更多相关文章

  1. 在Jetson TX2上显示摄像头视频并使用python进行caffe推理

    参考文章:How to Capture Camera Video and Do Caffe Inferencing with Python on Jetson TX2 与参考文章大部分都是相似的,如果 ...

  2. 在Jetson TX2上捕获、显示摄像头视频

    参考文章:How to Capture and Display Camera Video with Python on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下 ...

  3. 在Jetson TX2上安装caffe和PyCaffe

    caffe是Nvidia TensorRT最支持的深度学习框架,因此在Jetson TX2上安装caffe很有必要.顺便说一句,下面的安装是支持python3的. 先决条件 在Jetson TX2上完 ...

  4. 在Jetson TX2上安装OpenCV(3.4.0)

    参考文章:How to Install OpenCV (3.4.0) on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下面的描述 在我们使用python3进行编程时 ...

  5. Jetson TX2安装tensorflow(原创)

    Jetson TX2安装tensorflow 大致分为两步: 一.划分虚拟内存 原因:Jetson TX2自带8G内存这个内存空间在安装tensorflow编译过程中会出现内存溢出引发的安装进程奔溃 ...

  6. Jetson TX2 安装JetPack3.3教程

    Jetson TX2 刷机教程(JetPack3.3版本) 参考网站:https://blog.csdn.net/long19960208/article/details/81538997 版权声明: ...

  7. 02-NVIDIA Jetson TX2 通过JetPack 3.1刷机完整版(踩坑版)

    未经允许,不得擅自改动和转载 文 | 阿小庆 2018-1-20 本文继第一篇文章:01-NVIDIA Jetson TX2开箱上电显示界面 TX2 出厂时,已经自带了 Ubuntu 16.04 系统 ...

  8. Jetson TX2火力全开

    Jetson Tegra系统的应用涵盖越来越广,相应用户对性能和功耗的要求也呈现多样化.为此NVIDIA提供一种新的命令行工具,可以方便地让用户配置CPU状态,以最大限度地提高不同场景下的性能和能耗. ...

  9. 在TX2上多线程读取视频帧进行caffe推理

    参考文章:Multi-threaded Camera Caffe Inferencing TX2之多线程读取视频及深度学习推理 背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或者传入视频文 ...

随机推荐

  1. Vivado常见问题集锦

    5. Vivado软件更新新版后更新IP 当更新到新版本的Vivado后,之前的一些工程的IP是不能直接打开使用的,这个时候我们只需要使用新版本的Vivado更新一下每个工程的IP即可,使用新版本Vi ...

  2. SQLAlchemy框架用法详解

    介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DBAPI之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执 ...

  3. PIL遇到问题解决

    PIL 全称:Pillow 在使用PIL4.2.1版本读取jpeg文件时,报cannot identify image file,去github源查找原因:https://github.com/pyt ...

  4. WPF: WpfWindowToolkit 一个窗口操作库的介绍

    在 XAML 应用的开发过程中,使用MVVM 框架能够极大地提高软件的可测试性.可维护性.MVVM的核心思想是关注点分离,使得业务逻辑从 View 中分离出来到 ViewModel 以及 Model ...

  5. loadrunner中如何将MD5加密的值转换为大写

    上篇博客中写过如何将MD5加密,但是我们在实际的测试过程中可能需要将加密的结果进行大小写转换.我在这次的测试过程中就遇见了这样的问题, 我在测试时发现开发人员代码传的sign值是大写,而我加密出来的s ...

  6. BZOJ 1083: [SCOI2005]繁忙的都市【Kruscal最小生成树裸题】

    1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2925  Solved: 1927[Submit][Sta ...

  7. c++(单词统计)

    在面试环节中,有一道题目也是考官们中意的一道题目:如果统计一段由字符和和空格组成的字符串中有多少个单词? 其实,之所以问这个题目,考官的目的就是想了解一下你对状态机了解多少. (1) 题目分析 从题目 ...

  8. 通俗理解TCP握手次数是三次

    理解之后,应该说是至少三次就可以保证可靠传输了. 看到网上一篇帖子http://www.cnblogs.com/TechZi/archive/2011/10/18/2216751.html是这么说的, ...

  9. TI-RTOS 之 事件同步(Event, 类似semaphore)

    TI-RTOS 之 事件同步(Event, 类似semaphore) Event 是类似Semaphore的存在,官方如下描述: SYS/BIOS events are a means of comm ...

  10. jQuery:图片自动变换

    <script type="text/javascript"> var aa=0; //设置变换时间为2s var timeChange=2000; //定义数组 va ...