Description

题库链接

给你个 \(2\times N\) 的带权二分图,两个权值 \(a,b\) ,让你做匹配使得 \[\frac{\sum a}{\sum b}\] 最大。

\(1\leq N\leq 100\)

Solution

依旧是 \(01\) 分数规划的套路。我们二分答案 \(mid\) ,将每条边的边权修改为 \(a-mid\cdot b\) 。再跑一边最佳匹配看答案是否 \(\geq 0\) 。若满足,则左端点右移,不满足就右端点左移。记得边权可能为负,所以初始化左标杆时不能默认最小值为 \(0\) 。

Code

//It is made by Awson on 2018.3.8
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100;
const double eps = 1e-7, INF = 1e99;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, a[N+5][N+5], b[N+5][N+5]; double c[N+5][N+5];
double E1[N+5], E2[N+5], sla[N+5]; int vis1[N+5], vis2[N+5], match[N+5]; bool dfs(int u) {
vis1[u] = 1;
for (int i = 1; i <= n; i++)
if (vis2[i] == 0) {
double tmp = E1[u]+E2[i]-c[u][i];
if (fabs(tmp) < eps) {
vis2[i] = 1;
if (match[i] == 0 || dfs(match[i])) {
match[i] = u; return true;
}
}else sla[i] = min(sla[i], tmp);
}
return false;
}
bool KM() {
for (int i = 1; i <= n; i++) {
E1[i] = -INF, E2[i] = 0, match[i] = 0;
for (int j = 1; j <= n; j++) E1[i] = max(E1[i], c[i][j]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) sla[j] = INF;
while (1) {
for (int j = 1; j <= n; j++) vis1[j] = vis2[j] = 0;
if (dfs(i)) break;
double tmp = INF;
for (int j = 1; j <= n; j++) if (vis2[j] == 0) tmp = min(tmp, sla[j]);
for (int j = 1; j <= n; j++) {
if (vis1[j]) E1[j] -= tmp;
if (vis2[j]) E2[j] += tmp; else sla[j] -= tmp;
}
}
}
double ans = 0.; for (int i = 1; i <= n; i++) ans += c[match[i]][i];
return ans >= 0.;
}
void work() {
read(n);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(a[i][j]);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(b[i][j]);
double L = 0, R = 1e6;
while (R-L > eps) {
double mid = (R+L)/2.;
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) c[i][j] = a[i][j]-mid*b[i][j];
if (KM()) L = mid; else R = mid;
}
printf("%.6lf\n", (L+R)/2.);
}
int main() {
work(); return 0;
}

[SDOI 2017]新生舞会的更多相关文章

  1. [BZOJ 4819] [SDOI 2017] 新生舞会

    Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴. 有 \(n\) 个男生和 \(n\) 个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴. C ...

  2. bzoj4819 [Sdoi2017]新生舞会

    Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间的 ...

  3. bzoj 4819: [Sdoi2017]新生舞会

    Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间 ...

  4. [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]

    [Sdoi2017]新生舞会 题意:沙茶01分数规划 貌似\(*10^7\)变成整数更科学 #include <iostream> #include <cstdio> #inc ...

  5. [SDOI2017]新生舞会

    Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间 ...

  6. BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流

    BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流 Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞 ...

  7. bzoj5110: [CodePlus2017]Yazid 的新生舞会

    Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r] ,如果该子区间内的众数在该子区间的出现次数严格大于( ...

  8. 洛谷 P3705 [SDOI2017]新生舞会 解题报告

    P3705 [SDOI2017]新生舞会 题目描述 学校组织了一次新生舞会,\(Cathy\)作为经验丰富的老学姐,负责为同学们安排舞伴. 有\(n\)个男生和\(n\)个女生参加舞会买一个男生和一个 ...

  9. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. JavaScript(简介)【Javascript历史】

    学习一门知识应该了解其背景,很多人认为会用就行,起初我也是这么认为的,但后来才知道对起源的了解也很必要,从事javascript开发5年,今天开始总结一些笔记,分享下. 一.什么是JavaScript ...

  2. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  3. bzoj千题计划219:bzoj1568: [JSOI2008]Blue Mary开公司

    http://www.lydsy.com/JudgeOnline/problem.php?id=1568 写多了就觉着水了... #include<cstdio> #include< ...

  4. .NET Core装饰模式和.NET Core的Stream

    该文章综合了几本书的内容. 某咖啡店项目的解决方案 某咖啡店供应咖啡, 客户买咖啡的时候可以添加若干调味料, 最后要求算出总价钱. Beverage是所有咖啡饮料的抽象类, 里面的cost方法是抽象的 ...

  5. Ubuntu安装使用latex

    TeX Live is a TeX distribution to get up and running with the TeX document production system. To ins ...

  6. 部分和问题 nyoj

    部分和问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K.   输入 首先, ...

  7. java希尔排序

    java希尔排序 1.基本思想: 希尔排序也成为"缩小增量排序",其基本原理是,现将待排序的数组元素分成多个子序列,使得每个子序列的元素个数相对较少,然后对各个子序列分别进行直接插 ...

  8. Mego(08) - 高级建模

    对于模型建立Mego还提供了一些高级主题 数据库函数映射 我们可以将现有的CLR方法映射到指定数据库的标题函数上,如下所示 public class OrderManageEntities : DbC ...

  9. Mysql主从复制架构实战

    [root@Mysql-master ~]# vim /etc/my.cnf log-bin=mysql-bin server-id = 1  #slave端server-id值改成2 mysql&g ...

  10. Python内置函数(28)——iter

    英文文档: iter(object[, sentinel]) Return an iterator object. The first argument is interpreted very dif ...