In the world of Dota2, there are two parties: the Radiant and the Dire.

The Dota2 senate consists of senators coming from two parties. Now the senate wants to make a decision about a change in the Dota2 game. The voting for this change is a round-based procedure. In each round, each senator can exercise one of the two rights:

  1. Ban one senator's right
    A senator can make another senator lose all his rights in this and all the following rounds.
  2. Announce the victory
    If this senator found the senators who still have rights to vote are all from the same party, he can announce the victory and make the decision about the change in the game.

Given a string representing each senator's party belonging. The character 'R' and 'D' represent the Radiant party and the Dire party respectively. Then if there are n senators, the size of the given string will be n.

The round-based procedure starts from the first senator to the last senator in the given order. This procedure will last until the end of voting. All the senators who have lost their rights will be skipped during the procedure.

Suppose every senator is smart enough and will play the best strategy for his own party, you need to predict which party will finally announce the victory and make the change in the Dota2 game. The output should be Radiant or Dire.

Example 1:

Input: "RD"
Output: "Radiant"
Explanation: The first senator comes from Radiant and he can just ban the next senator's right in the round 1.
And the second senator can't exercise any rights any more since his right has been banned.
And in the round 2, the first senator can just announce the victory since he is the only guy in the senate who can vote.

Example 2:

Input: "RDD"
Output: "Dire"
Explanation:
The first senator comes from Radiant and he can just ban the next senator's right in the round 1.
And the second senator can't exercise any rights anymore since his right has been banned.
And the third senator comes from Dire and he can ban the first senator's right in the round 1.
And in the round 2, the third senator can just announce the victory since he is the only guy in the senate who can vote.

Note:

  1. The length of the given string will in the range [1, 10,000].

该来的总会来!!!自从上次LeetCode拿提莫出题Teemo Attacking后,我就知道刀塔早晚也难逃魔掌,这道题直接就搞起了刀塔二。不过话说如果你是从魔兽3无缝过渡到刀塔,那么应该熟悉了两个阵营的叫法,近卫和天灾。刀塔二里面不知道搞什么鬼,改成了光辉和梦魇,不管了,反正跟这道题的解法没什么关系。这道题模拟了刀塔类游戏开始之前的BP过程,两个阵营按顺序Ban掉对方的英雄,看最后谁剩下来了,就返回哪个阵营。那么博主能想到的简单暴力的方法就是先统计所有R和D的个数,然后从头开始遍历,如果遇到了R,就扫描之后所有的位置,然后还要扫描R前面的位置,这就要用到数组的环形遍历的知识了,其实就是坐标对总长度取余,使其不会越界,如果我们找到了下一个D,就将其标记为B,然后对应的计数器cntR自减1。对于D也是同样处理,我们的while循环的条件是cntR和cntD都要大于0,当有一个等于0了的话,那么推出循环,返回那个不为0的阵营即可,参见代码如下:

解法一:

class Solution {
public:
string predictPartyVictory(string senate) {
int n = senate.size(), cntR = , cntD = ;
for (char c : senate) {
c == 'R' ? ++cntR : ++cntD;
}
if (cntR == ) return "Dire";
if (cntD == ) return "Radiant";
while (cntR > && cntD > ) {
for (int i = ; i < n; ++i) {
if (senate[i] == 'R') {
for (int j = i + ; j < i + n; ++j) {
if (senate[j % n] == 'D') {
senate[j % n] = 'B';
--cntD;
break;
}
}
} else if (senate[i] == 'D') {
for (int j = i + ; j < i + n; ++j) {
if (senate[j % n] == 'R') {
senate[j % n] = 'B';
--cntR;
break;
}
}
}
}
}
return cntR != ? "Radiant" : "Dire";
}
};

上面的暴力搜索的方法略显复杂,我们其实有更好的方法来做,我们可以用两个队列queue,把各自阵营的位置存入不同的队列里面,然后进行循环,每次从两个队列各取一个位置出来,看其大小关系,小的那个说明在前面,就可以把后面的那个Ban掉,所以我们要把小的那个位置要加回队列里面,但是不能直接加原位置,因为下一轮才能再轮到他来Ban,所以我们要加上一个n,再排入队列。这样当某个队列为空时,推出循环,我们返回不为空的那个阵营,参见代码如下:

解法二:

class Solution {
public:
string predictPartyVictory(string senate) {
int n = senate.size();
queue<int> q1, q2;
for (int i = ; i < n; ++i) {
(senate[i] == 'R') ? q1.push(i) : q2.push(i);
}
while (!q1.empty() && !q2.empty()) {
int i = q1.front(); q1.pop();
int j = q2.front(); q2.pop();
(i < j) ? q1.push(i + n) : q2.push(j + n);
}
return (q1.size() > q2.size()) ? "Radiant" : "Dire";
}
};

类似题目:

Teemo Attacking

参考资料:

https://discuss.leetcode.com/topic/97671/java-c-very-simple-greedy-solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Dota2 Senate 刀塔二参议院的更多相关文章

  1. [Swift]LeetCode649. Dota2 参议院 | Dota2 Senate

    In the world of Dota2, there are two parties: the Radiantand the Dire. The Dota2 senate consists of ...

  2. 【LeetCode】649. Dota2 Senate 解题报告(Python)

    [LeetCode]649. Dota2 Senate 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...

  3. 649. Dota2 Senate

    In the world of Dota2, there are two parties: the Radiant and the Dire. The Dota2 senate consists of ...

  4. Leetcode 063 不同路径二

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为" ...

  5. 【JavaScript】Leetcode每日一题-二叉搜索树的范围和

    [JavaScript]Leetcode每日一题-二叉搜索树的范围和 [题目描述] 给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和. 示例1: 输入: ...

  6. 【python】Leetcode每日一题-二叉搜索树节点最小距离

    [python]Leetcode每日一题-二叉搜索树节点最小距离 [题目描述] 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 . 示例1: 输入:root = [4 ...

  7. 【python】Leetcode每日一题-二叉搜索迭代器

    [python]Leetcode每日一题-二叉搜索迭代器 [题目描述] 实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器: BSTIterator(T ...

  8. [LeetCode] “全排列”问题系列(二) - 基于全排列本身的问题,例题: Next Permutation , Permutation Sequence

    一.开篇 既上一篇<交换法生成全排列及其应用> 后,这里讲的是基于全排列 (Permutation)本身的一些问题,包括:求下一个全排列(Next Permutation):求指定位置的全 ...

  9. [LeetCode] Split BST 分割二叉搜索树

    Given a Binary Search Tree (BST) with root node root, and a target value V, split the tree into two ...

随机推荐

  1. python入门(Python和Pycharm安装)

      Python简介 Python是一种计算机程序设计语言,它结合了解释性.编译性.互动性和面向对象的脚本语言,非常简单易用.Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他 ...

  2. [BZOJ 1079][SCOI 2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  3. JavaScript(第三十二天)【Ajax】

    2005年Jesse James Garrett发表了一篇文章,标题为:"Ajax:A new Approach to Web Applications".他在这篇文章里介绍了一种 ...

  4. alpha冲刺第七天

    一.合照 二.项目燃尽图 三.项目进展 问答界面问答内容呈现 设置里的帐号设置呈现 能爬取教务处网站的内容保存到本地数据库 四.明日规划 继续完善各个内容的界面呈现 查找关于如何自动更新爬取内容 搜索 ...

  5. 简单的C语言编译器--概述

      在学习了编译原理的相关知识后,逐渐的掌握一个编译器的结构.作用和实现方法.同时,希望自己在不断的努力下写出一个简单的C语言编译器. 实现步骤 词法分析器:将C语言测试代码分解成一个一个的词法单元: ...

  6. Flask学习 三 web表单

    web表单 pip install flask-wtf 实现csrf保护 app.config['SECRET_KEY']='hard to guess string' # 可以用来存储框架,扩展,程 ...

  7. http客户端请求及服务端详解

    http客户端请求及服务端详解 引言 HTTP 是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和 扩展. ...

  8. c 语言的基本语法

    1,c的令牌(Tokens) printf("Hello, World! \n"); 这五个令牌是: printf ( "Hello, World! \n" ) ...

  9. Python内置函数(5)——pow

    英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...

  10. Spring Security入门(1-13)Spring Security的投票机制和投票器

    1.三种表决方式,默认是 一票制AffirmativeBased public interface AccessDecisionManager { /** * 通过传递的参数来决定用户是否有访问对应受 ...