[HNOI2013]消毒
题目大意:
网址:https://www.luogu.org/problemnew/show/3231
大意:a×b×c的三维空间里有a×b×c个点(x,y,z),其中有些点需要被消除。
消除的方法为:每次选定一个a1×b1×c1的三维区域,然后消除这个区域内的所有点。
消除的代价\(cost = min(a1,b1,c1);\)
现在询问消除此三维空间中所有需要消除点的最小代价为多少。
数据范围:\(a*b*c<=5000\)
题目解法:
显然题目可以转化为每次选择一个平面,然后消除该平面上的所有点。
先考虑二维空间,这不是超级无敌大水题吗。
二维不就是裸的二分图最小顶点覆盖吗?不明白怎么做的去AC一下这题:poj3041-Asteroids。
三维咋办?
观察到\(a*b*c<=5000\),那么a、b、c中至少有一个是小于等于17的。
我们枚举最小的这一维是否切割,如果不切再跑最小顶点覆盖即可。
然后这题最要命的其实不是怎么做,而是怎么实现。
考虑一下建图怎么办,开个三维数组乱搞、旋转肯定是不行的。
其实可以把每一个点拆成三个坐标,然后连边(具体看代码,讲也讲不清)。
具体实现代码:
#include<bits/stdc++.h>
#define gi(x) scanf("%d",&x)
#define maxn 5005
#define INF 1e9+7
using namespace std;
int D,L[4],d,pos,g1,g2,g3,use[maxn];
struct Road{int to,next,blg;}t[2*maxn]; int head[maxn],cnt;
int mtc[maxn],vis[maxn],Ans;
void Add(int u,int v,int w){
t[++cnt] = (Road){v,head[u]}; head[u] = cnt;
t[++cnt] = (Road){u,head[v]}; head[v] = cnt;
t[cnt-1].blg = t[cnt].blg = w;
}
//建图:
void Build(){
gi(L[1]); gi(L[2]); gi(L[3]);
pos = 1; cnt = 0;
for(int i = 1; i <= 3; i ++)
if(L[ i ] < L[ pos ])pos = i;
if(pos == 1)g1 = L[1],g2 = L[2],g3 = L[3];
if(pos == 2)g1 = L[2],g2 = L[1],g3 = L[3];
if(pos == 3)g1 = L[3],g2 = L[1],g3 = L[2];
for(int i = 1; i <= g2+g3; i ++)head[i] = 0;
for(int i = 1; i <= L[1]; i ++)
for(int j = 1; j <= L[2]; j ++)
for(int k = 1; k <= L[3]; k ++){
gi(d); if(!d)continue;
if(pos == 1)Add(j , g2 + k , i );
if(pos == 2)Add(i , g2 + k , j );
if(pos == 3)Add(i , g2 + j , k );
}
return;
}
bool Hungarian(int u,int Vis){
for(int i = head[u]; i; i = t[i].next){
int v = t[i].to;
if(vis[v] != Vis && !use[t[i].blg]){
vis[v] = Vis;
if(!mtc[v] || Hungarian(mtc[v],Vis)){
mtc[v] = u; mtc[u] = v;
return true;
}
}
}return false;
}
inline int Solve(int ret){
int Res = 0;
for(int i = 1; i <= g2+g3; i ++)mtc[i] = 0;
for(int i = 1; i <= g2+g3; i ++)vis[i] = 0;
for(int i = 1; i <= g2; i ++){
if(mtc[i])continue;
if(Hungarian(i,i))Res++;
if(Res + ret >= Ans)return Res + ret;
}return Res + ret;
}
void Dfs(int nw,int ret){
if(nw == L[pos]+1){Ans = min(Ans,Solve(ret)); return;}
use[nw] = true; Dfs(nw+1,ret+1);
use[nw] = false; Dfs(nw+1,ret);
}
int main(){
gi(D);
while(D--){
Build();
Ans = INF;
Dfs(1,0); printf("%d\n",Ans);
}
return 0;
}
[HNOI2013]消毒的更多相关文章
- [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)
3140: [Hnoi2013]消毒 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 676[Submit][Status] ...
- bzoj 3140: [Hnoi2013]消毒
3140: [Hnoi2013]消毒 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数 ...
- P3231 [HNOI2013]消毒
P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...
- 3140:[HNOI2013]消毒 - BZOJ
题目描述 Description 最近在生物实验室工作的小 T 遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为 a*b*c,a.b.c均为正整数.为了实验的方便,它被划 ...
- bzoj3140: [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...
- 【刷题】BZOJ 3140 [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...
- BZOJ3140:[HNOI2013]消毒——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3140 https://www.luogu.org/problemnew/show/P3231 最近在 ...
- bzoj3140: [Hnoi2013]消毒(二分图)
题目描述 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c个单位立方体区 ...
- [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)
传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...
随机推荐
- 6.C++初步分析类
面向对象的意义在于: -将日常生活中习惯的思维方式引入程序设计中 -将需求中的慨念直观的映射到解决方案中 -以模块为中心构建可复用的软件系统 -提高软件产品的可维护性和可扩展性 其中类和对象是面向对象 ...
- [Python Study Notes]列表操作
列表操作 a.切片 >>> names = ["Alex","Tenglan","Eric","Rain&quo ...
- javascript函数大全
JavaScript函数大全 1.document.write(""); 输出语句2.JS中的注释为//3.传统的HTML文档顺序是:document->html->( ...
- springmvc log4j 配置
web.xml 增加 <context-param> <param-name>log4jConfigLocation</param-name> <param- ...
- Effective Java 第三版——33. 优先考虑类型安全的异构容器
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- web端表格测试用例
表格测试: 表格内容列表排序功能是否正常每一栏的宽度是否足够宽,表格里的文字是否都有折行?是否有因为某一格的内容太多,而将整行的内容拉长?表格是否能左(右)添加(删除)列,表格是否能上(下)添加(删除 ...
- Yii2 Ajax Post 实例及常见错误修正
先贴下我的代码: signup.js$('.reg_verify_pic').click(function(){ var csrfToken = $('meta[name="_csrf-To ...
- iOS实现从服务器请求json数据并转化成NSDictionary
NSURL *url = [NSURL URLWithString:URL]; NSURLRequest *request = [NSURLRequest requestWithURL:url cac ...
- ubuntu Emergency Mode
sudo fsck -y /dev/sda# e2fsck -f -y -v -C 0 /dev/sda#
- PAT1078 Hashing 坑爹
思路:用筛法给素数打表,二次探测法(只需要增加的)–如果的位置被占,那么就依次探测. 注意:如果输入的,这也不是素数:如果,你需要打表的范围就更大了,因为不是素数. AC代码 #include < ...