Luogu Dynamic Ranking (带修改的主席树)
题目大意:
网址:https://www.luogu.org/problemnew/show/2617
给定一个序列a[1]、a[2]、...、a[N],完成M个操作,操作有两种:
[1]Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。
[2]C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。
数据范围: \(1≤n≤10000,1≤m≤10000\)
解法:带修改的主席树:
原本的主席树是维护了一个线段树前缀。
那么前缀有没有想到什么东西? 树状数组\(Bits\)是不是很 ...... ?
那么现在,我们用树状数组套主席树,不就可以实现带修改的可持久化了吗。
具体来说 \(T[1]维护rt[1]\) , \(T[2]维护rt[1]、rt[2]\) , \(T[3]维护rt[3]\) ......
就与树状数组是一样的。
那么现在,两个具体的操作:
修改:
修改需要修改\(logN\)棵主席树,将涉及修改节点的\(log\)个主席树先删后加点即可。
具体来说,修改x位置的,则要修改:for(x; x; x -= (x&-x))Update(rt[x]);
查询:
考虑一下树状数组的查询,是用到了两个前缀相减的方法。
那么这里也是一样的,查询\([L,R]\)就是\([1,R]\)的值减去\([1,(L-1)]\)的值。
具体来说,对于\([L,R]\)区间对应的主席树,每个点的sum值为:
\[Sum[ro] = ∑sum[ro[u]] - ∑sum[ro[v]];u∈[1,R],v∈[1,L-1]\]
那么以查询第区间第\(k\)大为例子,直接将\(k\)与节点的\(Sum\)值比较即可。
总复杂度:
时间复杂度:\(O(NLog^2N)\) , 空间复杂度\(O(NLog^2N)\)
两个去重、二分的函数:
Unique去重函数:
对于a[1]、a[2]、....、a[N],去重函数为:
\[Length = Unique(a+1,a+N+1) - a - 1;\]
Unique函数返回的是 去重后后面第一个空位置,所以要长度减1。
去重完的序列即为a[1]、a[2]、....、a[Length];
Lower_Bound二分函数:
对于序列a[1]、a[2]、....、a[N],查找<=x的最接近数的序列位置,为:
k = lower_bound(a+1,a+N+1,x) - oder;
low_bound返回的是那个值的地址,应该要与第0个位置相减得到其确切的位置。
具体实现代码:
#include<bits/stdc++.h>
#define RG register
#define IL inline
#define maxn 200005
using namespace std;
int N,M,Q,cntl,cntr,lg;
struct Ques{int l,r,k;}qs[maxn];
int rt[2*maxn],ls[20*maxn],rs[20*maxn],sum[20*maxn],tpl[maxn],tpr[maxn];
int a[maxn],oder[2*maxn],cnt;
void Update(int &ro,int l,int r,int ps,int chg){
if(!ro)ro = ++cnt;
sum[ro] += chg;
if(l == r)return;
RG int mid = (l+r)>>1;
if(ps <= mid)Update(ls[ro],l,mid,ps,chg);
else Update(rs[ro],mid+1,r,ps,chg);
}
IL void Modify(RG int ps,RG int chg){
RG int k = lower_bound(oder+1,oder+lg+1,a[ps]) - oder;
for(RG int i = ps; i <= N; i += (i&-i))
Update(rt[i],1,lg,k,chg);
}
int Query(int l,int r,int k){
if(l == r)return l;
RG int mid = (l+r)>>1,Sum = 0;
for(RG int i = 1; i <= cntl; i ++)Sum -= sum[ls[tpl[i]]];
for(RG int i = 1; i <= cntr; i ++)Sum += sum[ls[tpr[i]]];
if(k <= Sum){
for(RG int i = 1; i <= cntl; i ++)tpl[i] = ls[tpl[i]];
for(RG int i = 1; i <= cntr; i ++)tpr[i] = ls[tpr[i]];
return Query(l,mid,k);
}
else{
for(RG int i = 1; i <= cntl; i ++)tpl[i] = rs[tpl[i]];
for(RG int i = 1; i <= cntr; i ++)tpr[i] = rs[tpr[i]];
return Query(mid+1,r,k-Sum);
}
}
IL int Get(RG int l,RG int r,RG int k){
cntl = cntr = 0;
for(RG int i = (l-1); i ; i -= (i&-i))
tpl[++cntl] = rt[i];
for(RG int i = r; i ; i -= (i&-i))
tpr[++cntr] = rt[i];
return Query(1,lg,k);
}
int main(){
freopen("testdate.in","r",stdin);
cin>>N>>M;
for(RG int i = 1; i <= N; i ++)
cin>>a[i] , oder[++lg] = a[i];
char od; int l,r,k;
for(RG int i = 1,c; i <= M; i ++){
cin>>od;
if(od == 'Q')cin>>l>>r>>k,qs[i] = (Ques){l,r,k};
else cin>>l>>k,qs[i] = (Ques){l,0,k},oder[++lg] = k;
}
sort(oder+1,oder+lg+1);
lg = unique(oder+1,oder+lg+1) - oder - 1;
for(RG int i = 1; i <= N; i ++)Modify(i,1);
for(RG int i = 1; i <= M; i ++)
{
if(!qs[i].r){
Modify(qs[i].l , -1);
a[qs[i].l] = qs[i].k;
Modify(qs[i].l , 1);
}
else printf("%d\n",oder[Get(qs[i].l,qs[i].r,qs[i].k)]);
}
return 0;
}
Luogu Dynamic Ranking (带修改的主席树)的更多相关文章
- BZOJ 1901: Zju2112 Dynamic Rankings[带修改的主席树]【学习笔记】
1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7143 Solved: 2968[Su ...
- BZOJ2141排队——树状数组套权值线段树(带修改的主席树)
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...
- 【带修改的主席树】BZOJ1901-Dynamic Rankings
稍后整理笔记.这题数据范围好像有点问题? #include<iostream> #include<cstdio> #include<cstring> #includ ...
- POJ2104 K-th Number 不带修改的主席树 线段树
http://poj.org/problem?id=2104 给定一个序列,求区间第k小 通过构建可持久化的点,得到线段树左儿子和右儿子的前缀和(前缀是这个序列从左到右意义上的),然后是一个二分的ge ...
- 【poj1901-求区间第k大值(带修改)】树状数组套主席树
901: Zju2112 Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7025 Solved: 2925[Sub ...
- [Luogu 3701] 「伪模板」主席树
[Luogu 3701] 「伪模板」主席树 这是一道网络流,不是主席树,不是什么数据结构,而是网络流. 题目背景及描述都非常的暴力,以至于 Capella 在做此题的过程中不禁感到生命流逝. S 向 ...
- BZOJ 1901: Zju2112 Dynamic Rankings | 带修改主席树
题目: emmmm是个权限题 题解: 带修改主席树的板子题,核心思想是用树状数组维护动态前缀和的性质来支持修改 修改的时候修改类似树状数组一样进行logn个Insert 查询的时候同理,树状数组的方法 ...
- Dynamic Rankings—带单点修改的主席树
这道题应该是很不错的板子了\(\mathcal{\color{cyan}{Link}}\) \(\mathcal{\color{red}{Description}}\) 给定一个序列,有两种操作.一是 ...
- Dynamic Rankings ZOJ - 2112(主席树+树状数组)
The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...
随机推荐
- javascript 回到顶部 动画效果
上代码: <!DOCTYPE html> <html> <head> <meta content="测试demo" name=" ...
- 损失函数 hinge loss vs softmax loss
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁 ...
- MarkDown 编辑数学公式
1. 参考博客:http://blog.csdn.net/smstong/article/details/44340637 1 数学公式的web解决方案 在网页上显示漂亮的数学公式,是多年来数学工作者 ...
- 《Discuz安装时候出现乱码 -- 问题解决方法》
自我安装discuz时出现安装界面乱码的情况,跟链接所说一样,经过原作的分享,加上我自己的实验,明白了,什么时候修改/usr/local/php/etc/php.ini里面的default_chars ...
- Python标准异常总结
Python标准异常总结 AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d ...
- Java经典编程题50道之三十五
有一个数组,将其最大的元素与第一个元素交换,最小的元素与最后一个元素交换,然后输出数组. public class Example35 { public static void main(Str ...
- bcache的使用
一.前提:内核中需要配置bcache模块 1.1 检查 - 是否存在于内核中:检查/sys/fs/bcache目录是否存在,没有说明内核中没有bcache - 是否以内核模块方式存在:检查/lib/m ...
- js中的各种“位置”——“top、clientTop、scrollTop、offsetTop……”,你知道多少
当要做一些与位置相关的插件或效果的时候,像top.clientTop.scrollTop.offsetTop.scrollHeight.clientHeight.offsetParent...看到这么 ...
- PHP网站的安全要点
1. 删除不必要的模块 PHP随带内置的PHP模块.它们对许多任务来说很有用,但是不是每个项目都需要它们.只要输入下面这个命令,就可以查看可用的PHP模块: # php - m 一旦你查看了列表,现在 ...
- DLL文件修复
当你在Windows计算机中安装非操作系统的软件时,往往会覆盖或改写系统共享文件, 如动态链接库(.dll文件)和可执行文件(.exe文件). * 对于Windows系统来说,当用户操作不当(如非正常 ...