Adaboost\GBDT\GBRT\组合算法
Adaboost\GBDT\GBRT\组合算法(龙心尘老师上课笔记)
一、Bagging (并行bootstrap)& Boosting(串行)
随机森林实际上是bagging的思路,而GBDT和Adaboost实际上是boosting的思路。而bagging和boosting有什么区别呢?怎样从bagging转到boosting呢?
Bagging的假设函数:
如果是二分类问题:,其中T是分类器的总数,g(x)是其中的小分类器的取值(+1或-1),最后根据各个分类器的值求加和,根据和的符号得到最终大分类器是正还是负。
如果是回归问题:,最后取得是各个小分类器的平均值。
Bagging的特点1.各个学习器相互独立,可以同时并行生成;2.各个学习期权重相同
而Boosting特别大的区别就在于,各个学习器强烈依赖(上一个学习器产生,再产生下一个),串行生成,其中,gbdt(每个学习器权重相同),Adaboost(每个学习器权重不同)。
Boosting要解决的核心问题:
产生不同的训练集(训练集各样本标签不同,训练集各样本抽样权重不同)
产生不同的模型(不同的训练集,就能产生不同模型)
产生不同模型对应的权重
二、GBDT(生成新标签,串行生成树)
假设函数:
损失函数:均方损失函数
其中红色部分是之前集成学习器产生的残差,对应来看,这样可以理解成,红色部分相当于可以把之前学习器的残差,作为原来样本的新标签。这样就产生了新的训练集可以生成新的模型(下面右图2)。集成弱模型,得到强模型(下图3,样本x不变,标签Y变),依次下去重复,直到集合成最强模型。
损失函数:
(一阶泰勒展开,因为h(x)不是单位长度,所以需要放缩到单位长度,变成有约束条件下的凸优化问题;chargeboost中试二阶展开,就不用放缩了)
从集成学习器变成基学习器,不优化集成学习器整体,而以之前的学习器为已知项(G(X)),优化增加的那个学习器(损失函数也优化基学习器的)。不优化权重整体,而以之前的权重为已知项,优化权重变化的小量。每一步H(X)实际上就是CART树的生成过程。
三、Adaboost(每次新的学习器是基于上一次分类错误的样本,通过关注样本的权重来实现)
可以证明GDBT也是Adaboost的一种,最本质的区别:损失函数不同,指数损失函数:
另一个区别:假设函数不同:
g(x)的取值实际上是+1,-1,然后给一个权重相加,最后只取符号,正的就是+1,负的就是-1;a会越来越小,后面的学习器会越来越弱,所以尽管后面可能有些前面的被分类错误了,影响也不大。一直经历分对,分错,分对,分错的过程,直到损失函数最小,但后面的学习器的分布权重减少。
理解Adaboost训练过程
1. 新的弱模型来自于上一个弱模型,而不是之前所有模型的集合(GBDT)
2. 每个弱模型到强模型之前有权重(弱模型自身生成的权重)
3. 新权重,是样本的权重
样本权重:不同的样本分布权重对应不同训练集,类比boostrap,每一次boostrap抽样产生的新的训练集各类别样本比例不一样。(类似于上采样,多复制几遍负样本,也就是给予较多的权重)
基于错误分类的样本,给予权重的放大缩小,以使其分类正确。
样本的权重(其实是损失函数的系数):
新的分类器必须是在上一个分类器上表现最差,与上一个分类器不一样,这样才能改进上一个学习器,否者没有什么作用,而二分类问题,表现最差的情况就是拍脑袋分类1/2概率,从而求解权重un. 这种方式求解u过麻烦,因而就有了下图中,构造一种递推的方式。
模型的权重:
误差率越小,模型权重越高,也就是说如果一个模型能把所有的都分对,那我们就给予一个很高的权重。
梯度下降理解Adaboost:
要求解的仍然是增加的新学习器的g(x)和模型权重at
求解h(x),最优解就是h(x)=gt
求解η,最优解就是模型权重at
四、集成学习
精英制是加了权重之后再投票。
偏差是算法可能预测出一系列的值,取平均,与真实结果的偏离。方差是训练集数据的变化对学习结果的影响。如果说一个模型偏差高,则是欠拟合;如果说一个模型方差高,则是过拟合。一个模型的误差是由方差、偏差和噪声共同构成。
损失函数,adaboost基学习器的损失还是是0-1损失函数,只是前面加了权重,集成学习器的损失函数为指数损失函数;CART也可以看做集成学习器,看成是每一个树桩的集成学习。
Adaboost\GBDT\GBRT\组合算法的更多相关文章
- 机器学习总结(一) Adaboost,GBDT和XGboost算法
一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表 ...
- 排列组合算法(PHP)
用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...
- C#语法灵活运用之排列组合算法
今天群里有朋友求一个排列组合算法,题目是给定长度,输出所有指定字母的组合. 如指定字母a.b.c.d.e.f,长度为2,则结果应为:aa.ab.ac ... ef.ff. 有朋友给出算法,很有特色: ...
- JAVA-- M选N的组合算法
M选N的组合算法 只要每个数字出现一次就可以 举例 :也就是说123与321和213属于重复 只算一组 此算法已经排除了重复数据 应用--彩票的注数算法 本程序的思路是开一个数组b,其长度 ...
- Lua版组合算法
高效率的排列组合算法--<编程珠矶>--Lua实现 原文链接 原文是python实现的,这里给出lua版本的实现 组合算法 本程序的思路是开一个数组,其下标表示1到m个数,数组元素 ...
- 基于C#程序设计语言的三种组合算法
目录 基于C#程序设计语言的三种组合算法 1. 总体思路 1.1 前言 1.2 算法思路 1.3 算法需要注意的点 2. 三种组合算法 2.1 普通组合算法 2.2 与自身进行组合的组合算法 2.3 ...
- python实现高效率的排列组合算法-乾颐堂
组合算法 本程序的思路是开一个数组,其下标表示1到m个数,数组元素的值为1表示其下标 代表的数被选中,为0则没选中. 首先初始化,将数组前n个元素置1,表示第一个组合为前n个数. 然后从左到右扫描数组 ...
- 提升学习算法简述:AdaBoost, GBDT和XGBoost
1. 历史及演进 提升学习算法,又常常被称为Boosting,其主要思想是集成多个弱分类器,然后线性组合成为强分类器.为什么弱分类算法可以通过线性组合形成强分类算法?其实这是有一定的理论基础的.198 ...
- 基于Adaboost的人脸检测算法
AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器.根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38].AdaBoost分类器的构造过程 ...
随机推荐
- 第28章 java反射机制
java反射机制 1.类加载机制 1.1.jvm和类 运行Java程序:java 带有main方法的类名 之后java会启动jvm,并加载字节码(字节码就是一个类在内存空间的状态) 当调用java命令 ...
- AC日记——二叉堆练习3 codevs 3110
3110 二叉堆练习3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 给定N(N≤500,000)和N个整 ...
- JAVA设计模式之2-简单工厂模式
今天来介绍简单工厂模式,工厂模式包括简单工厂模式和抽象工厂模式,今天先讲简单工厂模式,然后引申到抽象工厂模式 在没有工厂模式前,我们创建类是直接new一个对象,比如下面所示,北汽有两个小型SUV,分别 ...
- [LeetCode] Insertion Sort List 链表插入排序
Sort a linked list using insertion sort. 链表的插入排序实现原理很简单,就是一个元素一个元素的从原链表中取出来,然后按顺序插入到新链表中,时间复杂度为O(n2) ...
- [LeetCode] Subsets 子集合
Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...
- Python小白的发展之路之Python基础(二)
列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1.列表.元组操作 (1)列表 列表是可变的(mutable)--可以改变列表的内容,这不同于字符串和元组,字符串和元组都是不 ...
- nodeJs 5.0.0 安装配置与nodeJs入门例子学习
新手学习笔记,高手请自动略过 安装可以先看这篇:http://blog.csdn.net/bushizhuanjia/article/details/7915017 1.首先到官网去下载exe,或者m ...
- DeepMind背后的人工智能:深度学习原理初探
去年11月,一篇名为<Playing Atari with Deep Reinforcement Learning>的文章被初创人工智能公司DeepMind的员工上传到了arXiv网站.两 ...
- localForage——轻松实现 Web 离线存储(转)
localStorage 能够让你实现基本的数据存储,但它的速度慢,而且不能处理二进制数据.IndexedDB 和 WebSQL 是异步的,速度快,支持大数据集,但他们的API 使用起来有点复杂.不仅 ...
- Android系统全貌 (转)
转自Gityuan的Android开篇,对自我学习作进一步整理. Android系统以Linux内核作为基底,上层采用Native层和Java层.系统分为内核空间和用户空间,并通过系统调用(Sysca ...