思路

题目要求的其实就是每种方案的权值之和(因为每种方案的概率相等)

所以自然想到要求所有的边对最终答案的贡献次数

考虑这一条边被经过了多少次,有这个子树内的点数*子树外的点数次,即\(k\times(n-k)\)

然后考虑总共的中序遍历总共有\(n!\)种,每种方案等概率

先钦定一个点\(i\)(乘上\(i!\)),然后枚举它的\(sz\),这样相当于枚举了每种生成的树的形态,做到了不重不漏

对于这个点\(i\),考虑选择K个点作为它的子树进行统计(\(sz_i=K+1\)),然后选择的k个点的方案数是\(\left(\begin{matrix}n-i\\K\end{matrix}\right)\),这\(K\)个点能构成的树的形态总数有\(K!\)个,然后考虑剩下的\(n-k-i\)个点的分配方案,因为不能放在\(i\)的子树中,所以分配的方案有\((i-1)(i)\dots(n-K-2)\)种(\(n-K-2\)因为只剩一个点,能选择\(n-sz_i-1=n-K-2\)个点),化简一下等于\(\frac{(n-k-2)!}{(i-2)!}\)

然后式子就出来了(注意i从二开始,因为从1开始似乎没有什么意义)

\[\begin{align}ans=&\sum_{i=2}^ni!\sum_{j=1}^{n-i+1}j!\left(\begin{matrix}n-i\\j-1\end{matrix}\right)\frac{(n-j-1)!}{(i-2)!}j(n-j)\\=&\sum_{i=2}^n\sum_{j=1}^{n-i+1}j!\left(\begin{matrix}n-i\\j-1\end{matrix}\right)(n-j-1)!(i-1)ij(n-j)\end{align}
\]

然后就很可做了

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int n,p,C[2010][2010],jc[2010],ans=0;
signed main(){
scanf("%d %d",&n,&p);
jc[0]=1;
for(int i=1;i<=n;i++)
jc[i]=(jc[i-1]*i)%p;
C[0][0]=1;
for(int i=1;i<=n;i++)
C[i][0]=C[i][i]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%p;
for(int i=2;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
ans=(ans+jc[j]*C[n-i][j-1]%p*jc[n-j-1]%p*(i-1)%p*i%p*j%p*(n-j)%p+p)%p;
printf("%d\n",ans);
return 0;
}

P4492 [HAOI2018]苹果树的更多相关文章

  1. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  2. 洛谷P4492 [HAOI2018]苹果树(组合数)

    题意 题目链接 Sol 有点自闭,.我好像对组合数一窍不通(~~~~) Orz shadowice // luogu-judger-enable-o2 #include<bits/stdc++. ...

  3. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  4. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  5. 题解 洛谷 P4492 【[HAOI2018]苹果树】

    考虑生成一颗二叉树的过程,加入第一个节点方案数为\(1\),加入第二个节点方案数为\(2\),加入第三个节点方案数为\(3\),发现生成一颗\(n\)个节点的二叉树的方案数为\(n!\). 所以题目中 ...

  6. Luogu 4492 [HAOI2018]苹果树 组合数

    https://www.luogu.org/problemnew/show/P4492 找每个编号的点的父边的贡献,组合数和阶乘就能算了. 我考场上怎么就是没想到呢. 调了好久好久好久好久调不出来,样 ...

  7. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  8. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  9. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

随机推荐

  1. html5-css选择器

    /*/**{color: red}p{color: green}#div1{background: blue;padding-top: 15px;}.kk{background: blue;borde ...

  2. uva 1322 Minimizing Maximizer

    题意: 有n个数,m个排序器,每个排序器可以把区间ai到bi的数从小到大排序.这m个排序器的输出就是m个排序之后的第n个数. 现在发现有些排序器是多余的.问至少需要多少个排序器可以使得输出不变.排序器 ...

  3. Vue + vant-UI 打造移动商城

  4. flask 单个页面多个表单(单视图处理、多视图处理)

    单个页面多个表单 除了在单个表单上实现多个提交按钮,有时还需要在单个页面上创建多个表单.比如,在程序的主页上同时添加登录和注册表单.当在同一个页面上添加多个表单时,我们需要解决的问题是在视图函数中判断 ...

  5. c# 控件的基类——Control

    控件的基类用于Windows窗体应用的控件都派生自Control类,并继承了许多通用成员,这些成员都是平时使用控件的过程中最常用的. Name:控件实例的名字,通常通过“属性”窗口设置,控件实例名称变 ...

  6. FTP搭建 共享上网 穿透内网外网

    1.ftp原理介绍 FTP只通过TCP连接,没有用于FTP的UDP组件.FTP不同于其他服务的是它使用了两个端口, 一个数据端口和一个命令端口(或称为控制端口).通常21端口是命令端口,20端口是数据 ...

  7. 4、CentOS6.5下安装php5.3

    操作系统:CentOS6.5 环境:Apache2.2安装成功.可查看:http://www.centoscn.com/image-text/install/2014/0505/2910.html M ...

  8. 前端框架VUE----计算属性和侦听器

    一.计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div> {{ message.split('').rev ...

  9. GoldenGate实时投递数据到大数据平台(5) - Kafka

    Oracle GoldenGate是Oracle公司的实时数据复制软件,支持关系型数据库和多种大数据平台.从GoldenGate 12.2开始,GoldenGate支持直接投递数据到Kafka等平台, ...

  10. pat 团体赛练习题集 L2-008. 最长对称子串

    对给定的字符串,本题要求你输出最长对称子串的长度.例如,给定"Is PAT&TAP symmetric?",最长对称子串为"s PAT&TAP s&quo ...