Google 以图搜图 - 相似图片搜索原理 - Java实现
前阵子在阮一峰的博客上看到了这篇《相似图片搜索原理》博客,就有一种冲动要将这些原理实现出来了。
Google "相似图片搜索":你可以用一张图片,搜索互联网上所有与它相似的图片。
打开Google图片搜索页面:
点击使用上传一张angelababy原图:
点击搜索后,Google将会找出与之相似的图片,图片相似度越高就越排在前面。如:
这种技术的原理是什么?计算机怎么知道两张图片相似呢?
根据Neal Krawetz博士的解释,实现相似图片搜素的关键技术叫做"感知哈希算法"(Perceptualhash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
以下是一个最简单的Java实现:
预处理:读取图片
- File inputFile = newFile(filename);
- BufferedImage sourceImage = ImageIO.read(inputFile);//读取图片文件
第一步,缩小尺寸。
将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
- int width= 8;
- intheight = 8;
- // targetW,targetH分别表示目标长和宽
- int type= sourceImage.getType();// 图片类型
- BufferedImagethumbImage = null;
- double sx= (double) width / sourceImage.getWidth();
- double sy= (double) height / sourceImage.getHeight();
- // 将图片宽度和高度都设置成一样,以长度短的为准
- if (b) {
- if(sx > sy) {
- sx= sy;
- width= (int) (sx * sourceImage.getWidth());
- }else {
- sy= sx;
- height= (int) (sy * sourceImage.getHeight());
- }
- }
- // 自定义图片
- if (type== BufferedImage.TYPE_CUSTOM) { // handmade
- ColorModelcm = sourceImage.getColorModel();
- WritableRasterraster = cm.createCompatibleWritableRaster(width,height);
- booleanalphaPremultiplied = cm.isAlphaPremultiplied();
- thumbImage= new BufferedImage(cm, raster, alphaPremultiplied, null);
- } else {
- // 已知图片,如jpg,png,gif
- thumbImage= new BufferedImage(width, height, type);
- }
- // 调用画图类画缩小尺寸后的图
- Graphics2Dg = target.createGraphics();
- //smoother than exlax:
- g.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);
- g.drawRenderedImage(sourceImage,AffineTransform.getScaleInstance(sx, sy));
- g.dispose();
第二步,简化色彩。
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
- int[]pixels = new int[width * height];
- for (inti = 0; i < width; i++) {
- for(int j = 0; j < height; j++) {
- pixels[i* height + j] = rgbToGray(thumbImage.getRGB(i, j));
- }
- }
- /**
- * 灰度值计算
- * @param pixels 彩色RGB值(Red-Green-Blue 红绿蓝)
- * @return int 灰度值
- */
- public static int rgbToGray(int pixels) {
- // int _alpha =(pixels >> 24) & 0xFF;
- int _red = (pixels >> 16) & 0xFF;
- int _green = (pixels >> 8) & 0xFF;
- int _blue = (pixels) & 0xFF;
- return (int) (0.3 * _red + 0.59 * _green + 0.11 * _blue);
- }
第三步,计算平均值。
计算所有64个像素的灰度平均值。
- int avgPixel= 0;
- int m = 0;
- for (int i =0; i < pixels.length; ++i) {
- m +=pixels[i];
- }
- m = m /pixels.length;
- avgPixel = m;
第四步,比较像素的灰度。
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
- int[] comps= new int[width * height];
- for (inti = 0; i < comps.length; i++) {
- if(pixels[i] >= avgPixel) {
- comps[i]= 1;
- }else {
- comps[i]= 0;
- }
- }
第五步,计算哈希值。
将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
=
= 8f373714acfcf4d0
- StringBufferhashCode = new StringBuffer();
- for (inti = 0; i < comps.length; i+= 4) {
- intresult = comps[i] * (int) Math.pow(2, 3) + comps[i + 1] * (int) Math.pow(2, 2)+ comps[i + 2] * (int) Math.pow(2, 1) + comps[i + 2];
- hashCode.append(binaryToHex(result));//二进制转为16进制
- }
- StringsourceHashCode = hashCode.toString();
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
- int difference = 0;
- int len =sourceHashCode.length();
- for (inti = 0; i < len; i++) {
- if(sourceHashCode.charAt(i) != hashCode.charAt(i)) {
- difference++;
- }
- }
你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。
这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。
以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。
提供源码下载,源码下载链接:http://download.csdn.net/detail/luohong722/3965112
参考链接:神奇的图像处理算法, 11款相似图片搜索引擎推荐,以图搜图将不再是难事,http://insidesearch.blogspot.com/2011/07/teaching-computers-to-see-image.html
Google 以图搜图 - 相似图片搜索原理 - Java实现的更多相关文章
- Google 以图搜图 - 相似图片搜索原理 - Java实现 (转)
前阵子在阮一峰的博客上看到了这篇<相似图片搜索原理>博客,就有一种冲动要将这些原理实现出来了. Google "相似图片搜索":你可以用一张图片,搜索互联网上所有与它相 ...
- 使用 selenium 实现谷歌以图搜图爬虫
使用selenium实现谷歌以图搜图 实现思路 原理非常简单,就是利用selenium去操作浏览器,获取到想要的链接,然后进行图片的下载,和一般的爬虫无异. 用到的技术:multiprocessing ...
- 以图搜图(一):Python实现dHash算法(转)
近期研究了一下以图搜图这个炫酷的东西.百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下.当然,不是很深入.深入的话,得运用到深度学习这货.Python深度学习当然不在话下. 这个功能最核心的东西就是 ...
- 以图搜图之模型篇: 基于 InceptionV3 的模型 finetune
在以图搜图的过程中,需要以来模型提取特征,通过特征之间的欧式距离来找到相似的图形. 本次我们主要讲诉以图搜图模型创建的方法. 图片预处理方法,看这里:https://keras.io/zh/prepr ...
- [No000007]搜索引擎以图搜图的原理
之前,Google把"相似图片搜索"正式放上了首页. 你可以用一张图片,搜索互联网上所有与它相似的图片.点击搜索框中照相机的图标. 一个对话框会出现. 你输入网片的网址,或者直接上 ...
- php 以图搜图
感知哈希算法count < =5 匹配最相似count > 10 两张不同的图片var_dump(ImageHash::run('1.jpg’, '2.jpg’)); <?php c ...
- 谷歌百度以图搜图 "感知哈希算法" C#简单实现
/// <summary> /// 感知哈希算法 /// </summary> public class ImageComparer { /// <summary> ...
- 如何使用 js 实现相似图片搜索
如何使用 js 实现相似图片搜索 以图搜图 https://www.google.com/imghp?hl=en https://www.google.com/imghp?hl=zh https:// ...
- Google图片搜索
本博文的主要内容有 .Google图片搜索的介绍 .Google图片之普通搜索 .Google图片之高级搜索 1.Google图片搜索的介绍 Google的图片搜索,不仅通过关键字查找拥有特 ...
随机推荐
- 2015 Multi-University Training Contest 1 - 1001 OO’s Sequence
OO’s Sequence Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5288 Mean: 给定一个数列,让你求所有区间上满足 ...
- [爬虫学习笔记]基于Bloom Filter的url去重模块UrlSeen
Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载 ...
- PHP+MySql例子
对于熟悉做网站的人来说,要想网站做成动态的,肯定要有数据库的支持,利用特定的脚本连接到数据库,从数据库中提取资料.向数据库中添加资料.删除资料等.这里我通过一个实例来说明如何用php连接到数据库的. ...
- Python基础:序列(字符串)
一.概述 字符串 类似于C中的字符数组(功能上更像C++中的string),它是由一个个 字符 组成的序列.与C/C++不同的是,Python中没有 字符 这个类型,而是用 长度为1的字符串 来表示字 ...
- SqlServer知识点记录分享
知识点介绍 双向检索:这里就不大话概念了,直接说它的作用 ISNULL()函数:判断函数是否有值,如果变量没有赋值就给定指定的值,下面的例子就是如果@TOTALCOUNT变量为NULL那么就赋值为空字 ...
- 泛函编程(16)-泛函状态-Functional State
初接触泛函状态觉着很不习惯.主要是在使用State数据类型时很难理解其中的原理,特别是泛函状态变迁机制(state transition mechanism):怎么状态就起了变化,实在难以跟踪.我想这 ...
- R 网页数据爬虫1
For collecting and analyzing data. [启示]本处所分享的内容均是笔者从一些专业书籍中学习所得,也许会有一些自己使用过程中的技巧.心得.小经验一类的,但远比不上书中所讲 ...
- linux线程控制&线程分离
线程概念 线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元. 线程是程序中一个单一的顺序控制流程.进程内一个相对独立的.可调度的执行单元,是系统独立 ...
- 项目、SVN clean的一些事
1.如果你发现你的文件修改了.Tomcat也重新了,但访问的还是旧的文件,这个时候你需要clean下你的项目. Clean will discard all build problems and bu ...
- js判断用户的浏览器设备是移动端还是pc端
最近做的一个网站页面中需要根据用户的访问设备的不同来显示不同的页面样式,主要是判断移动设备还是电脑浏览器访问的. 下面给出js判断处理代码,以作参考. <script type="te ...