利用JAVA计算TFIDF和Cosine相似度-学习版本
写在前面的话,既然是学习版本,那么就不是一个好用的工程实现版本,整套代码全部使用List进行匹配效率可想而知。
【原文转自】:http://computergodzilla.blogspot.com/2013/07/how-to-calculate-tf-idf-of-document.html,修改了其中一些bug。
P.S:如果不是被迫需要语言统一,尽量不要使用此工程计算TF-IDF,计算2W条短文本,Matlab实现仅是几秒之间,此Java工程要计算良久。。半个小时?甚至更久,因此此程序作为一个学习版本,并不适用于工程实现。。工程试验版本
For beginners doing a project in text mining aches them a lot by various term like :
- TF-IDF
- COSINE SIMILARITY
- CLUSTERING
- DOCUMENT VECTORS
In my earlier post I showed you guys what is Cosine Similarity. I will not talk about Cosine Similarity in this post but rather I will show a nice little code to calculate Cosine Similarity in java.
Many of you must be familiar with Tf-Idf(Term frequency-Inverse Document Frequency).
I will enlighten them in brief.
Term Frequency:
Suppose for a document “Tf-Idf Brief Introduction” there are overall 60000 words and a word Term-Frequency occurs 60times.
Then , mathematically, its Term Frequency, TF = 60/60000 =0.001.
Inverse Document Frequency:
Suppose one bought Harry-Potter series, all series. Suppose there are 7 series and a word “AbraKaDabra” comes in 2 of the series.
Then, mathematically, its Inverse-Document Frequency , IDF = 1 +
log(7/2) = …….(calculated it guys, don’t be lazy, I am lazy not you
guys.)
And Finally, TFIDF = TF * IDF;
By mathematically I assume you now know its meaning physically.
Document Vector:
There are various ways to calculate document vectors. I am just giving
you an example. Suppose If I calculate all the term’s TF-IDF of a
document A and store them in an array(list, matrix … in any ordered way,
.. you guys are genius you know how to create a vector. ) then I get an
Document Vector of TF-IDF scores of document A.
The class shown below calculates the Term Frequency(TF) and Inverse Document Frequency(IDF).
- //TfIdf.java
- package com.computergodzilla.tfidf;
- import java.util.List;
- /**
- * Class to calculate TfIdf of term.
- * @author Mubin Shrestha
- */
- public class TfIdf {
- /**
- * Calculates the tf of term termToCheck
- * @param totalterms : Array of all the words under processing document
- * @param termToCheck : term of which tf is to be calculated.
- * @return tf(term frequency) of term termToCheck
- */
- public double tfCalculator(String[] totalterms, String termToCheck) {
- double count = 0; //to count the overall occurrence of the term termToCheck
- for (String s : totalterms) {
- if (s.equalsIgnoreCase(termToCheck)) {
- count++;
- }
- }
- return count / totalterms.length;
- }
- /**
- * Calculates idf of term termToCheck
- * @param allTerms : all the terms of all the documents
- * @param termToCheck
- * @return idf(inverse document frequency) score
- */
- public double idfCalculator(List<String[]> allTerms, String termToCheck) {
- double count = 0;
- for (String[] ss : allTerms) {
- for (String s : ss) {
- if (s.equalsIgnoreCase(termToCheck)) {
- count++;
- break;
- }
- }
- }
- return 1 + Math.log(allTerms.size() / count);
- }
- }
The class shown below parsed the text documents and split them into
tokens. This class will communicate with TfIdf.java class to calculated
TfIdf. It also calls CosineSimilarity.java class to calculated the
similarity between the passed documents.
- //DocumentParser.java
- package com.computergodzilla.tfidf;
- import java.io.BufferedReader;
- import java.io.File;
- import java.io.FileNotFoundException;
- import java.io.FileReader;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- /**
- * Class to read documents
- *
- * @author Mubin Shrestha
- */
- public class DocumentParser {
- //This variable will hold all terms of each document in an array.
- private List<String[]> termsDocsArray = new ArrayList<String[]>();
- private List<String> allTerms = new ArrayList<String>(); //to hold all terms
- private List<double[]> tfidfDocsVector = new ArrayList<double[]>();
- /**
- * Method to read files and store in array.
- * @param filePath : source file path
- * @throws FileNotFoundException
- * @throws IOException
- */
- public void parseFiles(String filePath) throws FileNotFoundException, IOException {
- File[] allfiles = new File(filePath).listFiles();
- BufferedReader in = null;
- for (File f : allfiles) {
- if (f.getName().endsWith(“.txt”)) {
- in = new BufferedReader(new FileReader(f));
- StringBuilder sb = new StringBuilder();
- String s = null;
- while ((s = in.readLine()) != null) {
- sb.append(s);
- }
- String[] tokenizedTerms = sb.toString().replaceAll(“[\\W&&[^\\s]]”, “”).split(“\\W+”); //to get individual terms
- for (String term : tokenizedTerms) {
- if (!allTerms.contains(term)) { //avoid duplicate entry
- allTerms.add(term);
- }
- }
- termsDocsArray.add(tokenizedTerms);
- }
- }
- }
- /**
- * Method to create termVector according to its tfidf score.
- */
- public void tfIdfCalculator() {
- double tf; //term frequency
- double idf; //inverse document frequency
- double tfidf; //term requency inverse document frequency
- for (String[] docTermsArray : termsDocsArray) {
- double[] tfidfvectors = new double[allTerms.size()];
- int count = 0;
- for (String terms : allTerms) {
- tf = new TfIdf().tfCalculator(docTermsArray, terms);
- idf = new TfIdf().idfCalculator(termsDocsArray, terms);
- tfidf = tf * idf;
- tfidfvectors[count] = tfidf;
- count++;
- }
- tfidfDocsVector.add(tfidfvectors); //storing document vectors;
- }
- }
- /**
- * Method to calculate cosine similarity between all the documents.
- */
- public void getCosineSimilarity() {
- for (int i = 0; i < tfidfDocsVector.size(); i++) {
- for (int j = 0; j < tfidfDocsVector.size(); j++) {
- System.out.println(“between ” + i + “ and ” + j + “ = ”
- + new CosineSimilarity().cosineSimilarity
- (
- tfidfDocsVector.get(i),
- tfidfDocsVector.get(j)
- )
- );
- }
- }
- }
- }
This is the class that calculates Cosine Similarity:
- //CosineSimilarity.java
- /*
- * To change this template, choose Tools | Templates
- * and open the template in the editor.
- */
- package com.computergodzilla.tfidf;
- /**
- * Cosine similarity calculator class
- * @author Mubin Shrestha
- */
- public class CosineSimilarity {
- /**
- * Method to calculate cosine similarity between two documents.
- * @param docVector1 : document vector 1 (a)
- * @param docVector2 : document vector 2 (b)
- * @return
- */
- public double cosineSimilarity(double[] docVector1, double[] docVector2) {
- double dotProduct = 0.0;
- double magnitude1 = 0.0;
- double magnitude2 = 0.0;
- double cosineSimilarity = 0.0;
- for (int i = 0; i < docVector1.length; i++) //docVector1 and docVector2 must be of same length
- {
- dotProduct += docVector1[i] * docVector2[i]; //a.b
- magnitude1 += Math.pow(docVector1[i], 2); //(a^2)
- magnitude2 += Math.pow(docVector2[i], 2); //(b^2)
- }
- magnitude1 = Math.sqrt(magnitude1);//sqrt(a^2)
- magnitude2 = Math.sqrt(magnitude2);//sqrt(b^2)
- if (magnitude1 != 0.0 | magnitude2 != 0.0) {
- cosineSimilarity = dotProduct / (magnitude1 * magnitude2);
- } else {
- return 0.0;
- }
- return cosineSimilarity;
- }
- }
Here’s the main class to run the code:
- //TfIdfMain.java
- package com.computergodzilla.tfidf;
- import java.io.FileNotFoundException;
- import java.io.IOException;
- /**
- *
- * @author Mubin Shrestha
- */
- public class TfIdfMain {
- /**
- * Main method
- * @param args
- * @throws FileNotFoundException
- * @throws IOException
- */
- public static void main(String args[]) throws FileNotFoundException, IOException
- {
- DocumentParser dp = new DocumentParser();
- dp.parseFiles(“D:\\FolderToCalculateCosineSimilarityOf”); // give the location of source file
- dp.tfIdfCalculator(); //calculates tfidf
- dp.getCosineSimilarity(); //calculates cosine similarity
- }
- }
You can also download the whole source code from here: Download. (Google Drive)
Overall what I did is, I first calculate the TfIdf matrix of all the
documents and then document vectors of each documents. Then I used those
document vectors to calculate cosine similarity.
You think clarification is not enough. Hit me..
Happy Text-Mining!!
from: http://jacoxu.com/?p=1619
利用JAVA计算TFIDF和Cosine相似度-学习版本的更多相关文章
- 利用sklearn进行tfidf计算
转自:http://blog.csdn.net/liuxuejiang158blog/article/details/31360765?utm_source=tuicool 在文本处理中,TF-IDF ...
- 利用sklearn计算文本相似性
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf- ...
- Java计算计算活了多少天
Java计算计算活了多少天 思路: 1.输入你的出现日期: 2.利用日期转换,将字符串转换成date类型 3.然后将date时间换成毫秒时间 4.然后获取当前毫秒时间: 5.最后计算出来到这个时间多少 ...
- 使用不同的方法计算TF-IDF值
摘要 这篇文章主要介绍了计算TF-IDF的不同方法实现,主要有三种方法: 用gensim库来计算tfidf值 用sklearn库来计算tfidf值 用python手动实现tfidf的计算 总结 之所以 ...
- 第二次作业利用java语言编写计算器进行四则运算
随着第一次作业的完成,助教 牛老师又布置了第二次作业:用java语言编写一个程序然后进行四则运算用户用键盘输入一个字符来结束程序显示统计结果.一开始看到这个题目我也着实吓了一跳 因为不知道如何下手而且 ...
- SparkGraphx计算指定节点的N度关系节点
直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.gra ...
- 初学Hadoop之计算TF-IDF值
1.词频 TF(term frequency)词频,就是该分词在该文档中出现的频率,算法是:(该分词在该文档出现的次数)/(该文档分词的总数),这个值越大表示这个词越重要,即权重就越大. 例如:一篇文 ...
- 基于熵的方法计算query与docs相似度
一.简单总结 其实相似度计算方法也是老生常谈,比如常用的有: 1.常规方法 a.编辑距离 b.Jaccard c.余弦距离 d.曼哈顿距离 e.欧氏距离 f.皮尔逊相关系数 2.语义方法 a.LSA ...
- 利用Java动态生成 PDF 文档
利用Java动态生成 PDF 文档,则需要开源的API.首先我们先想象需求,在企业应用中,客户会提出一些复杂的需求,比如会针对具体的业务,构建比较典型的具备文档性质的内容,一般会导出PDF进行存档.那 ...
随机推荐
- 提高Vector容器的删除效率
vector容器是类似与一个线性数组,索引效率高,插入,删除的效率很低,需要遍历数据列表,一般情况下vector的删除操作由一下函数完成: iterator erase(iterator positi ...
- Sphinx+MySQL5.1x+SphinxSE+mmseg
一.不停止mysql的情况下安装SphinxSE 1.确定mysql版本,下载对应源码包 此处下载5.1.69的mysql源码包 #wget ftp://ftp.ntu.edu.tw/pub/MySQ ...
- the core or essence of a computer
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION The ALU is that part ...
- Java高级之内存模型分析
博客出自:http://blog.csdn.net/liuxian13183,转载注明出处! All Rights Reserved ! 下文是博主感悟,请带着怀疑性的态度阅读! 需要了解基本变量所占 ...
- 【Android测试】【第十一节】Uiautomator——简介
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/4872244.html 前言 在App的测试中,除了单元测试 ...
- php--jquery操作全选、批量删除、加减行
- Delphi调用约定
Register Calling Convention Ojbect Pascal的默认调用约定为register,寄存器调用约定会将前三个参数依次放入eax,edx,ecx,返回值是eax(根据类型 ...
- django session
上周一个新的应用场景,带出来了关于django session管理的问题. 公司的另一个App以Widget的形式嵌入我们的页面,就是我们提供一些url,另一个App通过iframe的形式嵌入这些ur ...
- magento
打开 magento/app/code/core/Mage/Core/Model/Session/Abstract/varien.php//if (isset($cookieParams['doma ...
- Using Change Management and Change Control Within a Project
In any project, change is inevitable whether it comes from within the project or from external sourc ...