4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 13069   Accepted: 3669
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题目大意:输入n  表示a b c d 四个集合都有n个元素之后每行输入4个集合中的一个元素,求这四个集合每个集合中拿出一个数 相加等于0的组数。
解题方法:哈希表开放定址法。
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <iostream>
using namespace std; #define MAX_VAL 20000000 typedef struct
{
int nCount;
int x;
}Hash; Hash HashTable[MAX_VAL];
int a[], b[], c[], d[]; void InsertHT(int n)
{
int addr = n % MAX_VAL;
if (addr < )
{
addr += MAX_VAL;
}
while(HashTable[addr].nCount != && HashTable[addr].x != n)
{
addr = (addr + ) % MAX_VAL;
}
HashTable[addr].nCount++;
HashTable[addr].x = n;
} int SearchHT(int n)
{
int addr = n % MAX_VAL;
if (addr < )
{
addr += MAX_VAL;
}
while (HashTable[addr].nCount != && HashTable[addr].x != n)
{
addr = (addr + ) % MAX_VAL;
}
return HashTable[addr].nCount;
} int main()
{
int n, ans = ;
scanf("%d", &n);
memset(HashTable, , sizeof(HashTable));
for (int i = ; i < n; i++)
{
scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
}
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
InsertHT(a[i] + b[j]);
}
}
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
ans += SearchHT(-c[i] - d[j]);
}
}
printf("%d\n", ans);
return ;
}

POJ 2785 4 Values whose Sum is 0的更多相关文章

  1. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  2. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  3. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  4. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...

  5. POJ 2785 4 Values whose Sum is 0(哈希表)

    [题目链接] http://poj.org/problem?id=2785 [题目大意] 给出四个数组,从每个数组中选出一个数,使得四个数相加为0,求方案数 [题解] 将a+b存入哈希表,反查-c-d ...

  6. POJ 2785 4 Values whose Sum is 0 Hash!

    http://poj.org/problem?id=2785 题目大意: 给你四个数组a,b,c,d求满足a+b+c+d=0的个数 其中a,b,c,d可能高达2^28 思路: 嗯,没错,和上次的 HD ...

  7. poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

    Description The SUM problem can be formulated . In the following, we assume that all lists have the ...

  8. [POJ] 2785 4 Values whose Sum is 0(双向搜索)

    题目地址:http://poj.org/problem?id=2785 #include<cstdio> #include<iostream> #include<stri ...

  9. POJ 2785 4 Values whose Sum is 0 (二分)题解

    思路: 如果用朴素的方法算O(n^4)超时,这里用折半二分.把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数. 注意和有重复 #include<iost ...

随机推荐

  1. Server Develop (九) Simple Web Server

    Simple Web Server web服务器hello world!-----简单的socket通信实现. HTTP HTTP是Web浏览器与Web服务器之间通信的标准协议,HTTP指明了客户端如 ...

  2. git log控制输出宽度

    %<(N, trunc) 下一个单元的输出宽度限制为N列, 左对齐 %<|(N, trunc) 下一个单元输出至全局第N列, 左对齐 %>, %>|, %>>, % ...

  3. javascript 日常总结

    1. 将彻底屏蔽鼠标右键 oncontextmenu=”window.event.returnValue=false” < table border oncontextmenu=return(f ...

  4. 在sublime text 中的Emmet快捷键动态图演示

    Emmet的前身是大名鼎鼎的Zen coding,如果你从事Web前端开发的话,对该插件一定不会陌生.它使用仿CSS选择器的语法来生成代码,大大提高了HTML/CSS代码编写的速度,比如下面的演示: ...

  5. Asset Catalog Help (二)---Creating an Asset Catalog

    Creating an Asset Catalog Create an asset catalog to simplify management of your app’s images. 创建一个a ...

  6. Leetcode 172 Factorial Trailing Zeroes

    给定一个数n 求出n!的末尾0的个数. n!的末尾0产生的原因其实是n! = x * 10^m 如果能将n!是2和5相乘,那么只要统计n!约数5的个数. class Solution { public ...

  7. 为CentOS 6 配置本地YUM源

    在网上找了很多为CentOS 6配置本地YUM源的方法,其中有很多是与网络相关的,我只想配个自己用的,结果就发现这个方法比较简单实用,就转过来了. 环境:CentOS 6.0 默认的yum是以网络来安 ...

  8. Windows 8.1/Server 2012 R2/Embedded 8.1 with Update 3(MSDN最新版)

    微软于12月16日更新了包含Update 3的ISO,此次更新并不会明显改善用户的界面体验,下载后请校验MD5.我整理了中.英文的8.1/服务器版/嵌入式版本/多国语言包. 1,Windows 8.1 ...

  9. (转)阴影锥(Shadow Volume)

    转自:http://blog.csdn.net/zjull/article/details/11819923 Shadow Map和Shadow Volume是当今比较流行的实时阴影渲染方法,跟Sha ...

  10. latextools \cite 自动补全

    最近在用latex写毕业论文,编辑环境用的是Sublime Text 2 加 latextools 插件,在使用latextools的\cite命令来引用参考文献时,我们希望输入\cite{ 后自动弹 ...