Minimum Cost
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 13511   Accepted: 4628

Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output

4
-1

这一题的边有两个性质,

1 容量:供给-种类/需求-种类

2 价格: 供给-种类-需求

怎么想都想不到怎么保留这两种性质建边

看到小you的博客,可以分种类建图,恍然大悟

于是对每个种类分成两种边

1 源点->供给 需求->最终汇点 用于控制流量,价格为0

2 供给->需求 用于控制价格,流量为inf,

值得一提的是供给->需求是单向边,返回的边价格应该是负数,在这里卡了一次,还有每次流量应该是需求量

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int maxn=;
const int maxm=;
const int maxk=;
const int maxnum=;
const int inf =0x7fffffff; int f[maxnum][maxnum];//s 151 t 152
int cons[maxk][maxnum];
int cost[maxk][maxnum][maxnum];
int e[maxnum][maxnum];
int len[maxnum]; const int sups=,supt=;
int sum,n,m,k; int s1[maxk],s2[maxk];//s1 0-n-1 s2 n-n+m
bool input(){
memset(cons,,sizeof(cons));
memset(s1,,sizeof(s1));
memset(s2,,sizeof(s2)); sum=;
if(scanf("%d%d%d",&n,&m,&k)!=)return false;
if(n==&&m==&&k==)return false;
for(int i=;i<n;i++){
int c;
for(int j=;j<k;j++){
scanf("%d",&c);
cons[j][i]=c;
s1[j]+=c;
}
}
for(int i=n;i<n+m;i++){
int c;
for(int j=;j<k;j++){
scanf("%d",&c);
cons[j][i]=c;
s2[j]+=c;
}
} for(int i=;i<k;i++){
for(int j=;j<n;j++){
for(int ii=n;ii<n+m;ii++){
int c;
scanf("%d",&c);
cost[i][j][ii]=c;cost[i][ii][j]=-c;
}
}
} for(int i=;i<n;i++){
for(int j=n;j<n+m;j++){
e[i][j-n]=j;
e[j][i]=i;
e[i][m]=;
e[j][n]=;
e[][i]=i;
e[][j-n]=j;
}
}
fill(len,len+n,m+);
fill(len+n,len+n+m,n+);
len[]=n;
len[]=m;
return true;
}
void build(int kind){
memset(f,,sizeof(f));
for(int i=;i<n;i++)f[][i]=cons[kind][i];
for(int i=n;i<n+m;i++)f[i][]=cons[kind][i];
for(int i=;i<n;i++){
for(int j=n;j<n+m;j++){
f[i][j]=inf;
}
}
}
int d[maxnum],pre[maxnum];
bool vis[maxnum];
queue<int >que;
int mincostmaxflow(int s,int flow,int kind){
build(kind);
int res=;
while(flow>){
fill(d,d+,inf);
memset(vis,,sizeof(vis));
d[s]=;
que.push(s);
while(!que.empty()){
int fr=que.front();que.pop();
vis[fr]=false;
for(int i=;i<len[fr];i++){
int t=e[fr][i];
if(f[fr][t]>&&d[t]>d[fr]+cost[kind][fr][t]){
d[t]=d[fr]+cost[kind][fr][t];
pre[t]=fr;
if(!vis[t]){
que.push(t);
vis[t]=true;
}
}
}
}
if(d[supt]==inf)return -;
int sub=flow;
for(int v=supt;v!=sups;v=pre[v]){
sub=min(sub,f[pre[v]][v]);
}
flow-=sub;
res+=sub*d[supt];
for(int v=supt;v!=sups;v=pre[v]){
f[v][pre[v]]+=sub;
f[pre[v]][v]-=sub;
}
}
return res;
}
int main(){
while(input()){
int ans=;
bool sign=false;
for(int i=;i<k;i++){
if(s1[i]>s2[i]){printf("-1\n");sign=true;break;}
}
if(sign)continue;
for(int i=;i<k;i++){
int res=mincostmaxflow(,s1[i],i);
if(res==-){printf("-1\n");sign=true;break;}
ans+=res;
}
if(sign)continue;
printf("%d\n",ans); }
return ;
}

POJ 2516 Minimum Cost 最小费用流 难度:1的更多相关文章

  1. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

  2. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  3. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  4. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  5. POJ 2516 Minimum Cost(最小费用流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  6. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

  7. POJ - 2516 Minimum Cost 每次要跑K次费用流

    传送门:poj.org/problem?id=2516 题意: 有m个仓库,n个买家,k个商品,每个仓库运送不同商品到不同买家的路费是不同的.问为了满足不同买家的订单的最小的花费. 思路: 设立一个源 ...

  8. POJ 2516 Minimum Cost(拆点+KM完备匹配)

    题目链接:http://poj.org/problem?id=2516 题目大意: 第一行是N,M,K 接下来N行:第i行有K个数字表示第i个卖场对K种商品的需求情况 接下来M行:第j行有K个数字表示 ...

  9. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

随机推荐

  1. UVa 11082 Matrix Decompressing - 网络流

    开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...

  2. C++课程小结 继承与派生

    单继承与多重继承的区别 单继承:一个子类(派生类)只有一个父类(只由一个基类派生而成) 多继承:一个子类(派生类)有多个父类(由多个基类派生而成) 派生类的构成 (1) 从基类继承过来的成员(包括数据 ...

  3. MVC ---- Manager.ttinclude内容

    http://www.infoq.com/cn/news/2009/11/T4-Multiple-Output 初次认识并尝试使用T4生成代码的时候,相关学习资料似乎比较少.不过现在VS2010 的M ...

  4. hdu 5587 Array 二分

    Array Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem ...

  5. P2865 【[USACO06NOV]路障Roadblocks】(次短路)

    传送门 算法Dijkstra要求次短路 那么在不考虑重复走一条边的情况下 肯定是把最短路中的一段改成另一段 至少要换另一条边到路径里所以可以枚举所有不属于最短路的每条边(a,b) 那么dis(1,a) ...

  6. Goroutines和Channels(三)

    clock服务器每一个连接都会起一个goroutine.在本节中我们会创建一个echo服务器,这个服务在每个连接中会有多个goroutine.大多数echo服务仅仅会返回他们读取到的内容,就像下面这个 ...

  7. c++ 对符合条件的元素进行计数(count_if)

    #include <iostream> // cout #include <algorithm> // count_if #include <vector> // ...

  8. ubuntu 14.04 安装 gflags

    1.下载 git clone https://github.com/gflags/gflags 2.编译 进入源码目录(即gflags文件夹) cmake . make -j 24 sudo make ...

  9. C++反汇编书

    1. <C++反汇编与逆向分析技术揭秘> 2.

  10. 《剑指offer》第三十七题(序列化二叉树)

    // 面试题37:序列化二叉树 // 题目:请实现两个函数,分别用来序列化和反序列化二叉树. #include "BinaryTree.h" #include <iostre ...