Minimum Cost
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 13511   Accepted: 4628

Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output

4
-1

这一题的边有两个性质,

1 容量:供给-种类/需求-种类

2 价格: 供给-种类-需求

怎么想都想不到怎么保留这两种性质建边

看到小you的博客,可以分种类建图,恍然大悟

于是对每个种类分成两种边

1 源点->供给 需求->最终汇点 用于控制流量,价格为0

2 供给->需求 用于控制价格,流量为inf,

值得一提的是供给->需求是单向边,返回的边价格应该是负数,在这里卡了一次,还有每次流量应该是需求量

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int maxn=;
const int maxm=;
const int maxk=;
const int maxnum=;
const int inf =0x7fffffff; int f[maxnum][maxnum];//s 151 t 152
int cons[maxk][maxnum];
int cost[maxk][maxnum][maxnum];
int e[maxnum][maxnum];
int len[maxnum]; const int sups=,supt=;
int sum,n,m,k; int s1[maxk],s2[maxk];//s1 0-n-1 s2 n-n+m
bool input(){
memset(cons,,sizeof(cons));
memset(s1,,sizeof(s1));
memset(s2,,sizeof(s2)); sum=;
if(scanf("%d%d%d",&n,&m,&k)!=)return false;
if(n==&&m==&&k==)return false;
for(int i=;i<n;i++){
int c;
for(int j=;j<k;j++){
scanf("%d",&c);
cons[j][i]=c;
s1[j]+=c;
}
}
for(int i=n;i<n+m;i++){
int c;
for(int j=;j<k;j++){
scanf("%d",&c);
cons[j][i]=c;
s2[j]+=c;
}
} for(int i=;i<k;i++){
for(int j=;j<n;j++){
for(int ii=n;ii<n+m;ii++){
int c;
scanf("%d",&c);
cost[i][j][ii]=c;cost[i][ii][j]=-c;
}
}
} for(int i=;i<n;i++){
for(int j=n;j<n+m;j++){
e[i][j-n]=j;
e[j][i]=i;
e[i][m]=;
e[j][n]=;
e[][i]=i;
e[][j-n]=j;
}
}
fill(len,len+n,m+);
fill(len+n,len+n+m,n+);
len[]=n;
len[]=m;
return true;
}
void build(int kind){
memset(f,,sizeof(f));
for(int i=;i<n;i++)f[][i]=cons[kind][i];
for(int i=n;i<n+m;i++)f[i][]=cons[kind][i];
for(int i=;i<n;i++){
for(int j=n;j<n+m;j++){
f[i][j]=inf;
}
}
}
int d[maxnum],pre[maxnum];
bool vis[maxnum];
queue<int >que;
int mincostmaxflow(int s,int flow,int kind){
build(kind);
int res=;
while(flow>){
fill(d,d+,inf);
memset(vis,,sizeof(vis));
d[s]=;
que.push(s);
while(!que.empty()){
int fr=que.front();que.pop();
vis[fr]=false;
for(int i=;i<len[fr];i++){
int t=e[fr][i];
if(f[fr][t]>&&d[t]>d[fr]+cost[kind][fr][t]){
d[t]=d[fr]+cost[kind][fr][t];
pre[t]=fr;
if(!vis[t]){
que.push(t);
vis[t]=true;
}
}
}
}
if(d[supt]==inf)return -;
int sub=flow;
for(int v=supt;v!=sups;v=pre[v]){
sub=min(sub,f[pre[v]][v]);
}
flow-=sub;
res+=sub*d[supt];
for(int v=supt;v!=sups;v=pre[v]){
f[v][pre[v]]+=sub;
f[pre[v]][v]-=sub;
}
}
return res;
}
int main(){
while(input()){
int ans=;
bool sign=false;
for(int i=;i<k;i++){
if(s1[i]>s2[i]){printf("-1\n");sign=true;break;}
}
if(sign)continue;
for(int i=;i<k;i++){
int res=mincostmaxflow(,s1[i],i);
if(res==-){printf("-1\n");sign=true;break;}
ans+=res;
}
if(sign)continue;
printf("%d\n",ans); }
return ;
}

POJ 2516 Minimum Cost 最小费用流 难度:1的更多相关文章

  1. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

  2. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  3. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  4. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  5. POJ 2516 Minimum Cost(最小费用流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  6. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

  7. POJ - 2516 Minimum Cost 每次要跑K次费用流

    传送门:poj.org/problem?id=2516 题意: 有m个仓库,n个买家,k个商品,每个仓库运送不同商品到不同买家的路费是不同的.问为了满足不同买家的订单的最小的花费. 思路: 设立一个源 ...

  8. POJ 2516 Minimum Cost(拆点+KM完备匹配)

    题目链接:http://poj.org/problem?id=2516 题目大意: 第一行是N,M,K 接下来N行:第i行有K个数字表示第i个卖场对K种商品的需求情况 接下来M行:第j行有K个数字表示 ...

  9. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

随机推荐

  1. ReentrantReadWriteLock分析

    ReentrantReadWriteLock会使用两把锁来解决问题,一个读锁,一个写锁 线程进入读锁的前提条件: 没有其他线程的写锁, 没有写请求或者有读请求,但调用线程和持有锁的线程是同一个 线程进 ...

  2. 配置文件(Machine.config、Web.config、App.config)

    Machine.config1.该文件在Windows目录下\Microsoft.net\framework\[version]\Config\2.为了提高性能,该文件只包含不同于默认值的设置.并且定 ...

  3. UVa 1590 IP网络(简单位运算)

    Description   Alex is administrator of IP networks. His clients have a bunch of individual IP addres ...

  4. Java I/O学习 文件读写工具

    import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import jav ...

  5. Java中关于Arrays.asList()的操作

    我们可以通过Arrays.asList() 产生一个List,但是要记住,我们通过Arrays.asList产生的list是基于一个固定大小的数组的, 仅支持那些不会改变数组大小的操作.所以我们在使用 ...

  6. python 生成元组

    #create a tuple l = [(,), (,), (,)] print(list(zip(*l)))

  7. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  8. Codeforces 454D - Little Pony and Harmony Chest

    454D - Little Pony and Harmony Chest 思路: 状压dp,由于1的时候肯定满足题意,而ai最大是30,所以只要大于等于59都可以用1替换,所以答案在1到59之间 然后 ...

  9. java中的static关键字 学习总结

    使用static关键字修饰的变量和方法为静态变量.静态方法. 非静态方法可以访问静态变量/方法和非静态变量/方法,但静态方法只能访问静态变量/方法. 可以看到在静态方法中调用非静态变量和非静态方法时, ...

  10. select exists 的应用一例

    当遇到多层exists的时候,事情就变得开始复杂了.我们来看看这个例子吧 假设有三张表 选课表:学号.课程号 学生表:学号.姓名 课程表:课程号.课程名 请选出选了所有课程的学生 SELECT 姓名 ...