[Educational Codeforces Round 81 (Rated for Div. 2)]E. Permutation Separation(线段树,思维,前缀和)

E. Permutation Separation

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a permutation p1,p2,…,pnp1,p2,…,pn (an array where each integer from 11 to nn appears exactly once). The weight of the ii-th element of this permutation is aiai.

At first, you separate your permutation into two non-empty sets — prefix and suffix. More formally, the first set contains elements p1,p2,…,pkp1,p2,…,pk, the second — pk+1,pk+2,…,pnpk+1,pk+2,…,pn, where 1≤k<n1≤k<n.

After that, you may move elements between sets. The operation you are allowed to do is to choose some element of the first set and move it to the second set, or vice versa (move from the second set to the first). You have to pay aiai dollars to move the element pipi.

Your goal is to make it so that each element of the first set is less than each element of the second set. Note that if one of the sets is empty, this condition is met.

For example, if p=[3,1,2]p=[3,1,2] and a=[7,1,4]a=[7,1,4], then the optimal strategy is: separate pp into two parts [3,1][3,1] and [2][2] and then move the 22-element into first set (it costs 44). And if p=[3,5,1,6,2,4]p=[3,5,1,6,2,4], a=[9,1,9,9,1,9]a=[9,1,9,9,1,9], then the optimal strategy is: separate pp into two parts [3,5,1][3,5,1] and [6,2,4][6,2,4], and then move the 22-element into first set (it costs 11), and 55-element into second set (it also costs 11).

Calculate the minimum number of dollars you have to spend.

Input

The first line contains one integer nn (2≤n≤2⋅1052≤n≤2⋅105) — the length of permutation.

The second line contains nn integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n). It's guaranteed that this sequence contains each element from 11 to nn exactly once.

The third line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109).

Output

Print one integer — the minimum number of dollars you have to spend.

Examples

input

Copy

3
3 1 2
7 1 4

output

Copy

4

input

Copy

4
2 4 1 3
5 9 8 3

output

Copy

3

input

Copy

6
3 5 1 6 2 4
9 1 9 9 1 9

output

Copy

2

题意:

给定一个整数n以及一个1~n的全排列,和一个数组a[i]

让你找一个位置划开,将排列分成2个非空的部分,

然后将p[i] 移动到另一个部分的成本是a[i],

问使左边的所有数都比右边的所有的数小需要的最小成本是多少?

思路:

在区间\([1,n-1]\)枚举切割位置i (从p[i] 右边切开,不取n是因为要保证2部分初始非空) ,时间复杂度\(O(n)\)

那么我们知道所有p[i] 位置后面的小于等于 i 的数都要移动到左边,p[i] 位置即前面的大于 i 的数都要移动到右边。

我们尚若可以\(O(logn)\) 时间内得到上面移动操作的cost就可以维护出最小值。

我们想到了线段树。

首先对a[i] 做一个前缀和 数组 sum[i] ,代表将1~i的数都移动到右边需要的cost。

以sum[i] 数组建立区间修改,区间查询最小值的线段树。

然后从1到n-1枚举割切位置i,

对于第i个位置,我们将找到i在p中的位置 id ,将区间\([1,id-1]\) 减去 a[id],区间\([id,n-1]\) 加上a[id]

意义为:在切割位置大于等于i 的时候,不需要将数字i移动到右边部分,又结合线段树维护的是前缀和数组,

那么对于每一个位置i 用线段树的根节点维护的最小值去更新答案ans即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
const int maxn = 300010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int p[maxn];
int id[maxn];
ll a[maxn];
ll sum[maxn];
struct node
{
int l, r;
ll laze;
ll val;
} segment_tree[maxn << 2];
void pushup(int rt)
{
segment_tree[rt].val = min(segment_tree[rt << 1].val, segment_tree[rt << 1 | 1].val);
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r)
{
segment_tree[rt].val = sum[l];
segment_tree[rt].laze = 0ll;
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void pushdown(int rt)
{
segment_tree[rt << 1 | 1].val += segment_tree[rt].laze;
segment_tree[rt << 1 | 1].laze += segment_tree[rt].laze;
segment_tree[rt << 1 ].val += segment_tree[rt].laze;
segment_tree[rt << 1 ].laze += segment_tree[rt].laze;
segment_tree[rt].laze = 0;
}
void update(int rt, int l, int r, int num)
{
if (segment_tree[rt].laze && l != r)
{
pushdown(rt);
}
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r)
{
segment_tree[rt].val += num;
segment_tree[rt].laze += num;
return ;
}
int mid = segment_tree[rt].l + segment_tree[rt].r >> 1;
if (r > mid)
{
update(rt << 1 | 1, l, r, num);
}
if (l <= mid)
{
update(rt << 1, l, r, num);
}
pushup(rt);
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
n = readint();
repd(i, 1, n)
{
p[i] = readint();
id[p[i]] = i;
}
repd(i, 1, n)
{
a[i] = readll();
}
repd(i, 1, n)
{
sum[i] = sum[i - 1] + a[i];
}
ll ans = a[n];
build(1, 1, n - 1);
ans = min(ans, segment_tree[1].val);
int x;
repd(i, 1, n)
{
x = id[i];
if (x != n)
{
update(1, x, n - 1, -a[x]);
}
if (x != 1)
{
update(1, 1, x - 1, a[x]);
}
ans = min(ans, segment_tree[1].val);
}
printf("%lld\n", ans ); return 0;
}

[Educational Codeforces Round 81 (Rated for Div. 2)]E. Permutation Separation(线段树,思维,前缀和)的更多相关文章

  1. Educational Codeforces Round 51 (Rated for Div. 2) G. Distinctification(线段树合并 + 并查集)

    题意 给出一个长度为 \(n\) 序列 , 每个位置有 \(a_i , b_i\) 两个参数 , \(b_i\) 互不相同 ,你可以进行任意次如下的两种操作 : 若存在 \(j \not = i\) ...

  2. Educational Codeforces Round 47 (Rated for Div. 2)F. Dominant Indices 线段树合并

    题意:有一棵树,对于每个点求子树中离他深度最多的深度是多少, 题解:线段树合并快如闪电,每个节点开一个权值线段树,递归时合并即可,然后维护区间最多的是哪个权值,到x的深度就是到根的深度减去x到根的深度 ...

  3. Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)

    Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...

  4. Educational Codeforces Round 81 (Rated for Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1295 A. Display The Number 贪心思路,尽可能放置更多位,如果n为奇数,消耗3去放置一个7,剩下的放1 AC ...

  5. Educational Codeforces Round 81 (Rated for Div. 2) B. Infinite Prefixes

    题目链接:http://codeforces.com/contest/1295/problem/B 题目:给定由0,1组成的字符串s,长度为n,定义t = sssssss.....一个无限长的字符串. ...

  6. Educational Codeforces Round 81 (Rated for Div. 2) C. Obtain The String

    题目链接:http://codeforces.com/contest/1295/problem/C 题目:给定字符串s,t.  给定一个空串z,需要按照规则把z构造成 string z == stri ...

  7. Educational Codeforces Round 81 (Rated for Div. 2)

    A 0~9需要多少笔画,自取7和1,判奇偶 #include<bits/stdc++.h> using namespace std; #define ll long long #defin ...

  8. Educational Codeforces Round 81 (Rated for Div. 2) 题解

    过了n天补的题解:D AB就不用说了 C. Obtain The String 思路挺简单的,就是贪心,但是直接贪心的复杂度是O(|s|*|t|),会超时,所以需要用到序列自动机 虽然名字很高端但是就 ...

  9. Educational Codeforces Round 81 (Rated for Div. 2)E(线段树)

    预处理把左集划分为大小为1~i-1时,把全部元素都移动到右集的代价,记作sum[i]. 然后枚举终态时左集的大小,更新把元素i 留在/移动到 左集的代价. 树状数组/线段树处理区间修改/区间查询 #d ...

随机推荐

  1. python opencv:使用鼠标当做画笔

    鼠标事件 import cv2 events=[i for i in dir(cv2) if 'EVENT'in i] print events 双击画圆圈 import cv2 import num ...

  2. history路由

    class HistoryRouter{ constructor(){ //用于存储不同path值对应的回调函数 this.routers = {}; this.listenPopState(); t ...

  3. ROS机器人系统学习——踩坑之路

    推荐学习教程:深蓝学院 机器人操作系统ROS理论与实践学习 在学习到第2讲ROS基础的分布式通信时,一直卡在这里,主机开启小海龟后,从机虽然可以通过 rostopic list 列出当前的所有topi ...

  4. 在Visual Studio 2017中,.NET(C#)通过Oracle.ManagedDataAccess来连接Oracle数据库

    C#如何通过Oracle.ManagedDataAccess来连接Oracle数据库 1.先创建一个项目,鼠标右击项目中的引用,再点击管理NuGet程序包(也可以先下载dll文件,再选添加引用),在搜 ...

  5. iOS 开发之应用内弹出 App Store 应用界面

    在APP内给其他APP做推广,经常用到在应用内弹出应用的APP #import <StoreKit/SKStoreProductViewController.h> 设置代理:<SKS ...

  6. 树莓派4B踩坑指南 - (10)安装坚果云(更新:暂不支持)

    191209更新: 根据坚果云用户支持(helpdesk@nutstore.net)的官方回复,客户端不支持arm,所以本篇后续内容可以不用看了.. 原文如下: "您好,客户端似乎不支持ar ...

  7. C++98常用特性介绍——mutable关键字

    讲mutable前,先讲一下const函数,讲const函数前,先讲一下函数前后加const的区别 一.C++函数前后加const的区别 1)函数前加const:普通函数或非静态成员函数前均可加con ...

  8. centos7搭建hadoop2.10完全分布式

    本篇介绍在centos7中大家hadoop2.10完全分布式,首先准备4台机器:1台nn(namenode);3台dn(datanode) IP hostname 进程 192.168.30.141 ...

  9. shell脚本添加脚本执行时间和当前运行次数current running time

    #!/bin/bash ############################ #Author:Bing #Create time:3/31/2017 ####################### ...

  10. 吴裕雄--天生自然ORACLE数据库学习笔记:数据表对象

    create table students( stuno ) not null, --学号 stuname ), --姓名 sex ), --性别 age int, --年龄 departno ) n ...