吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS
import numpy as np
import matplotlib.pyplot as plt from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model,discriminant_analysis def load_data():
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #线性判断分析LinearDiscriminantAnalysis
def test_LinearDiscriminantAnalysis(*data):
X_train,X_test,y_train,y_test=data
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)
print('Coefficients:%s, intercept %s'%(lda.coef_,lda.intercept_))
print('Score: %.2f' % lda.score(X_test, y_test)) # 产生用于分类的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_LinearDiscriminantAnalysis
test_LinearDiscriminantAnalysis(X_train,X_test,y_train,y_test)

def plot_LDA(converted_X,y):
'''
绘制经过 LDA 转换后的数据
:param converted_X: 经过 LDA转换后的样本集
:param y: 样本集的标记
'''
fig=plt.figure()
ax=Axes3D(fig)
colors='rgb'
markers='o*s'
for target,color,marker in zip([0,1,2],colors,markers):
pos=(y==target).ravel()
X=converted_X[pos,:]
ax.scatter(X[:,0], X[:,1], X[:,2],color=color,marker=marker,label="Label %d"%target)
ax.legend(loc="best")
fig.suptitle("Iris After LDA")
plt.show() def run_plot_LDA():
'''
执行 plot_LDA 。其中数据集来自于 load_data() 函数
'''
X_train,X_test,y_train,y_test=load_data()
X=np.vstack((X_train,X_test))
Y=np.vstack((y_train.reshape(y_train.size,1),y_test.reshape(y_test.size,1)))
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X, Y)
converted_X=np.dot(X,np.transpose(lda.coef_))+lda.intercept_
plot_LDA(converted_X,Y) # 调用 run_plot_LDA
run_plot_LDA()

def test_LinearDiscriminantAnalysis_solver(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 solver 参数的影响
'''
X_train,X_test,y_train,y_test=data
solvers=['svd','lsqr','eigen']
for solver in solvers:
if(solver=='svd'):
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver)
else:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver,shrinkage=None)
lda.fit(X_train, y_train)
print('Score at solver=%s: %.2f' %(solver, lda.score(X_test, y_test))) # 调用 test_LinearDiscriminantAnalysis_solver
test_LinearDiscriminantAnalysis_solver(X_train,X_test,y_train,y_test)

def test_LinearDiscriminantAnalysis_shrinkage(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 shrinkage 参数的影响
'''
X_train,X_test,y_train,y_test=data
shrinkages=np.linspace(0.0,1.0,num=20)
scores=[]
for shrinkage in shrinkages:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver='lsqr',shrinkage=shrinkage)
lda.fit(X_train, y_train)
scores.append(lda.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(shrinkages,scores)
ax.set_xlabel(r"shrinkage")
ax.set_ylabel(r"score")
ax.set_ylim(0,1.05)
ax.set_title("LinearDiscriminantAnalysis")
plt.show()
# 调用 test_LinearDiscr
test_LinearDiscriminantAnalysis_shrinkage(X_train,X_test,y_train,y_test)

吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS的更多相关文章
- 吴裕雄--天生自然 人工智能机器学习实战代码:ELASTICNET回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄--天生自然 人工智能机器学习实战代码:LASSO回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 吴裕雄--天生自然python机器学习:决策树算法
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
- 吴裕雄--天生自然python机器学习:机器学习简介
除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...
- 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...
随机推荐
- Gym102361E Escape
Link 首先我们可以推出一些有用的结论: 1.任意两个机器人之间的路线不能重合,但是可以垂直交叉. 2.如果一个格子没有转向器,那么最多允许两个机器人以相互垂直的方向通过. 3.如果一个格子有转向器 ...
- 三、VIP课程:并发编程专题->01-并发编程之Executor线程池详解
01-并发编程之Executor线程池详解 线程:什么是线程&多线程 线程:线程是进程的一个实体,是 CPU 调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系 ...
- MyBatis从入门到精通(第5章):MyBatis代码生成器
jdk1.8.MyBatis3.4.6.MySQL数据库5.6.45.Eclipse Version: 2019-12 M2 (4.14.0) MyBatis从入门到精通(第5章):MyBatis代码 ...
- drf三大认证:认证组件-权限组件-权限六表-自定义认证组件的使用
三大认证工作原理简介 认证.权限.频率 源码分析: from rest_framework.views import APIView 源码分析入口: 内部的三大认证方法封装: 三大组件的原理分析: 权 ...
- Python—选择排序算法
# 选择排序,时间复杂度O(n²) def select_sort(arr): """ 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置. 再从剩余未排序元 ...
- \_\_getattribute\_\_
__getattribute__ 一.__getattr__ 不存在的属性访问,触发__getattr__ class Foo: def __init__(self, x): self.x = x d ...
- C/S 和 B/S架构
C/S 和 B/S架构 一.单机架构 应用领域: 植物大战僵尸 office 二.C/S架构 [ 应用领域: QQ 大型网络游戏 计算机发展初期用户去取数据,直接就去主机拿,从这里开始就分出了客户端和 ...
- [Algo] 175. Decompress String II
Given a string in compressed form, decompress it to the original string. The adjacent repeated chara ...
- FastReport 使用入门 (二)
上部分 我们将格式大概都画好了 下面 我们将Datatable的每列绑定到 我们添加的table控件上 .然后打开table控件的事件 双击选中 ManualBuild 事件 添加代码 priva ...
- 数据结构与算法——认识O(NlogN)的排序(1)
归并排序 1) 整体就是一个简单递归,左边排好序.右边排好序.让其整体有序 2) 让其整体有序的过程里用了外排序方法 3) 利用master公式来求解时间复杂度 4) 归并排序的实质 时间复杂度0(N ...