参考:https://blog.csdn.net/haoji007/article/details/81035565?utm_source=blogxgwz9

首先从网上下载imagenet训练好的模型,模型下载地址

http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

可以把模型放入/caffe-master/models/bvlc_googlenet/目录下

bvlc_googlenet目录就是官方提供的googlenet模型,可以训练或者直接使用googlenet模型。

可以在这个文件夹中新建一个image文件夹,存放要检测的照片。

然后就是编写一个test.py测试程序,程序如下:

#coding=utf-8

import numpy as np

import matplotlib.pyplot as plt

import os

import PIL

from PIL import Image

caffe_root = '/home/grid/caffe-master/'

import sys

sys.path.insert(0,caffe_root+'python')

import caffe

MODEL_FILE =caffe_root+'models/bvlc_googlenet/deploy.prototxt'

PRETRAINED =caffe_root+'models/bvlc_googlenet/bvlc_googlenet.caffemodel'

#cpu模式

caffe.set_mode_cpu()

#定义使用的神经网络模型

net = caffe.Classifier(MODEL_FILE,PRETRAINED,

mean=np.load(caffe_root +'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1),

channel_swap=(2,1,0),

raw_scale=255,

image_dims=(224, 224))

imagenet_labels_filename = caffe_root +'data/ilsvrc12/synset_words.txt'

labels =np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

#对目标路径中的图像,遍历并分类

for root,dirs,files inos.walk("/home/grid/caffe-master/models/bvlc_googlenet/image/"):

for file in files:

#加载要分类的图片

IMAGE_FILE = os.path.join(root,file).decode('gbk').encode('utf-8');

input_image = caffe.io.load_image(IMAGE_FILE)

#预测图片类别

prediction = net.predict([input_image])

print 'predicted class:',prediction[0].argmax()

# 输出概率最大的前5个预测结果

top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]

print labels[top_k]

然后执行程序python test.py

输入预测结果:

编写检测深度模型测试程序python的更多相关文章

  1. Kelp.Net是一个用c#编写的深度学习库

    Kelp.Net是一个用c#编写的深度学习库 基于C#的机器学习--c# .NET中直观的深度学习   在本章中,将会学到: l  如何使用Kelp.Net来执行自己的测试 l  如何编写测试 l  ...

  2. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  3. 编写高质量代码–改善python程序的建议(二)

    原文发表在我的博客主页,转载请注明出处! 建议七:利用assert语句来发现问题断言(assert)在很多语言中都存在,它主要为调试程序服务,能够快速方便地检查程序的异常或者发现不恰当的输入等,可防止 ...

  4. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  5. 编写高质量代码--改善python程序的建议(六)

    原文发表在我的博客主页,转载请注明出处! 建议二十八:区别对待可变对象和不可变对象 python中一切皆对象,每一个对象都有一个唯一的标识符(id()).类型(type())以及值,对象根据其值能否修 ...

  6. 编写高质量代码--改善python程序的建议(八)

    原文发表在我的博客主页,转载请注明出处! 建议四十一:一般情况下使用ElementTree解析XML python中解析XML文件最广为人知的两个模块是xml.dom.minidom和xml.sax, ...

  7. 编写高质量代码改善python程序91个建议学习01

    编写高质量代码改善python程序91个建议学习 第一章 建议1:理解pythonic的相关概念 狭隘的理解:它是高级动态的脚本编程语言,拥有很多强大的库,是解释从上往下执行的 特点: 美胜丑,显胜隐 ...

  8. TensorFlow文本与序列的深度模型

    TensorFlow深度学习笔记 文本与序列的深度模型 Deep Models for Text and Sequence 转载请注明作者:梦里风林Github工程地址:https://github. ...

  9. pytorch中检测分割模型中图像预处理探究

    Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检 ...

随机推荐

  1. VUE - 路由跳转时设置动画效果

    /* 为对应的路由跳转时设置动画效果 */   <transition name="fade">         <router-view />     & ...

  2. XV6源代码阅读-虚拟内存管理

    Exercise1 源代码阅读 1.内存管理部分: kalloc.c vm.c 以及相关其他文件代码 kalloc.c:char * kalloc(void)负责在需要的时候为用户空间.内核栈.页表页 ...

  3. Http与Https协议规范

    HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW中使用的是HTTP/1.0的第 ...

  4. 用JS写一个网站树形菜单

    先上效果图: 主体内容就是侧边展示的一二三级菜单,树形结构的. 前端页面布局内容,页面内容简单用ul li 来完成所有的罗列项.用先后顺序来区分一级二级三级: <body> <b&g ...

  5. 012.Oracle数据库,字符串文本大小写转换,转大写,转小写,首字母大写

    /*转大写*/ SELECT UPPER(TITLE_EN) FROM ME_EO WHERE ( ISSUE_DATE BETWEEN to_date( '2017-02-04', 'yyyy-MM ...

  6. 005-PHP函数输出一行内容

    <?php function printBold($inputText) //定义function printBold() { print("<B>" . $in ...

  7. CSS样式表——样式2

    样式 5)边界边框 margin:0px;                                            //外边距为0 margin:10px 0px 0px 10px;   ...

  8. javascript 原型链污染

    原理①javascript中构造函数就相当于类,并且可以将其实例化 ②javascript的每一个函数都有一个prototype属性,用来指向该构造函数的原型同样的javascript的每一个实例对象 ...

  9. 响应式布局rem的使用

    在如今移动端,响应式布局的时代,用rem作为单位已经是非常普及的一门小技巧了..rem的单位根据html的font-size来进行换算! 1.rem的兼容性: 如下图所示IE9以上就支持了rem这个属 ...

  10. G - Traffic

    vin is observing the cars at a crossroads. He finds that there are n cars running in the east-west d ...