k-折交叉验证(k-fold crossValidation):
在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数据集A随机分为k个包,每次将其中一个包作为测试集,剩下k-1个包作为训练集进行训练。
在matlab中,可以利用:
indices=crossvalind('Kfold',x,k);
来实现随机分包的操作,其中x为一个N维列向量(N为数据集A的元素个数,与x具体内容无关,只需要能够表示数据集的规模),k为要分成的包的总个数,输出的结果indices是一个N维列向量,每个元素对应的值为该单元所属的包的编号(即该列向量中元素是1~k的整随机数),利用这个向量即可通过循环控制来对数据集进行划分。例:
[M,N]=size(data);//数据集为一个M*N的矩阵,其中每一行代表一个样本
    indices=crossvalind('Kfold',data(1:M,N),10);//进行随机分包
    for k=1:10//交叉验证k=10,10个包轮流作为测试集
        test = (indices == k); //获得test集元素在数据集中对应的单元编号
        train = ~test;//train集元素的编号为非test元素的编号
        train_data=data(train,:);//从数据集中划分出train样本的数据
 train_target=target(:,train);//获得样本集的测试目标,在本例中是实际分类情况
        test_data=data(test,:);//test样本集
 test_target=target(:,test);
[HammingLoss(1,k),RankingLoss(1,k),OneError(1,k),Coverage(1,k),Average_Precision(1,k),Outputs,Pre_Labels.MLKNN]=MLKNN_algorithm(train_data,train_target,test_data,test_target);//要验证的算法
 end
//上述结果为输出算法MLKNN的几个验证指标及最后一轮验证的输出和结果矩阵,每个指标都是一个k元素的行向量

K折-交叉验证的更多相关文章

  1. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  2. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  3. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  4. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  5. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  6. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  7. 偏差(bias)和方差(variance)及其与K折交叉验证的关系

    先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...

  8. (数据挖掘-入门-6)十折交叉验证和K近邻

    主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...

  9. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

随机推荐

  1. 能源科技,苹果和Google的新圣战?

    细心的果粉可能会注意到,最新版本的IOS软体中,增加了一个不起眼的按钮,它是一款署名为"家庭"的App,之所以说它不起眼,是因为它好像真得没什么用,活跃率恐怕不及Wechat的万分 ...

  2. OO第四单元总结暨学期总结

    一.第四单元作业架构设计 我们第四单元围绕UML图展开,在第四单元开始之前,本来以为我们的工作是学习如何使用UML工具,开始后才意识到我们要做的是解析UML类图.顺序图和状态图.当然,让我们解析的只是 ...

  3. Android中使用AsyncTask

    >##今天写作业用到了AnsyncTask,记录一下自己的使用情况 >###1.Android.os.AsyncTask类 >  1.AsyncTask类对线程间通讯进行了包装,我们 ...

  4. ITT Corporation之“中国战略”

    前言:众所周知,中国已经成为全世界第二大经济体,并且坐拥14亿人口的庞大市场,蕴藏着巨大的市场机遇,海外高科技企业想法获得长足的发展重视和开拓中国市场成为重中之重,诸如特斯拉,google,苹果等,近 ...

  5. 弹性盒子Flex Box滚动条原理,避免被撑开,永不失效

    在HTML中,要实现区域内容的滚动,只需要设定好元素的宽度和高度,然后设置CSS属性overflow 为auto或者scroll:   在Flex box布局中,有时我们内容的宽度和高度是可变的,无法 ...

  6. 记一次苹果APP从账号续费到发布成功的历程

    一.一波三折的续费      最近公司开发的苹果APP的SSL证书到期了,计划重新发布一下该APP,已替换即将到期的SSL证书.近几年随着钉钉.企业微信等在线办公软件超级平台的出现,各企业都会选择其中 ...

  7. html/css系列 BFC

    本文详情:https://www.cnblogs.com/chen-... 第一种 BFC中的盒子对齐 <div class="container"> <div ...

  8. iTerm2 都不会用,还敢自称老司机?(上)

    对于需要长期与终端打交道的工程师来说,拥有一款称手的终端管理器是很有必要的,对于 Windows 用户来说,最好的选择是 Xshell,这个大家都没有异议.但对于 MacOS 用户来说,仍然毋庸置疑, ...

  9. C# BASS音频库 + 频谱基本用法

    效果图: 使用了 BASS.dll.  BASS.NET.dll   和  PeakMeterCtrl.dll 前面两个负责播放   最后一个负责绘制频谱,本文重点讲的是频谱部分,播放音频部分注意一点 ...

  10. Vue2.0 【第一季】第2节 v-if v-else v-show 指令

    目录 Vue2.0 [第一季]第2节 v-if v-else v-show 指令 第二节 v-if v-else v-show 指令 2.1 v-if指令.v-else指令: 2.2 v-show的使 ...