UVA - 11149 Power of Matrix(矩阵倍增)
题意:已知N*N的矩阵A,输出矩阵A + A2 + A3 + . . . + Ak,每个元素只输出最后一个数字。
分析:
A + A2 + A3 + . . . + An可整理为下式,

从而可以用log2(n)的复杂度算出结果。
注意:输入时把矩阵A的每个元素对10取余,因为若不处理,会导致k为1的时候结果出错。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 10;
const double pi = acos(-1.0);
const int MAXN = 40 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int n;
struct Matrix{
int r, c, matrix[MAXN][MAXN];
Matrix(int rr, int cc):r(rr), c(cc){
memset(matrix, 0, sizeof matrix);
}
};
Matrix add(Matrix a, Matrix b){
Matrix ans(n, n);
for(int i = 0; i < a.r; ++i){
for(int j = 0; j < a.c; ++j){
ans.matrix[i][j] = ((a.matrix[i][j] % MOD) + (b.matrix[i][j] % MOD)) % MOD;
}
}
return ans;
}
Matrix mul(Matrix a, Matrix b){
Matrix ans(a.r, b.c);
for(int i = 0; i < a.r; ++i){
for(int j = 0; j < b.c; ++j){
for(int k = 0; k < a.c; ++k){
(ans.matrix[i][j] += ((a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD)) % MOD) %= MOD;
}
}
}
return ans;
}
Matrix QPOW(Matrix a, int k){
Matrix ans(n, n);
for(int i = 0; i < n; ++i){
ans.matrix[i][i] = 1;
}
while(k){
if(k & 1) ans = mul(ans, a);
a = mul(a, a);
k >>= 1;
}
return ans;
}
Matrix solve(Matrix tmp, int k){
if(k == 1) return tmp;
Matrix t = solve(tmp, k >> 1);
Matrix ans = add(t, mul(QPOW(tmp, k >> 1), t));
if(k & 1) ans = add(ans, QPOW(tmp, k));
return ans;
}
int main(){
int k;
while(scanf("%d%d", &n, &k) == 2){
if(n == 0) return 0;
Matrix tmp(n, n);
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
scanf("%d", &tmp.matrix[i][j]);
tmp.matrix[i][j] %= MOD;
}
}
Matrix ans = solve(tmp, k);
for(int i = 0; i < ans.r; ++i){
for(int j = 0; j < ans.c; ++j){
if(j) printf(" ");
printf("%d", ans.matrix[i][j]);
}
printf("\n");
}
printf("\n");
}
return 0;
}
UVA - 11149 Power of Matrix(矩阵倍增)的更多相关文章
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- UVA 11149 Power of Matrix 快速幂
题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...
- UVA 11149 Power of Matrix 构造矩阵
题目大意:意思就是让求A(A是矩阵)+A2+A3+A4+A5+A6+······+AK,其中矩阵范围n<=40,k<=1000000. 解题思路:由于k的取值范围很大,所以很自然地想到了二 ...
- UVA 11149 Power of Matrix
矩阵快速幂. 读入A矩阵之后,马上对A矩阵每一个元素%10,否则会WA..... #include<cstdio> #include<cstring> #include< ...
- UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11149 题意: 给出矩阵A,求出A^1 + A^2 …… + A^k . 题解: 1.可知:A^1 + A^2 …… + A ...
- UVA 11149.Power of Matrix-矩阵快速幂倍增
Power of Matrix UVA - 11149 代码: #include <cstdio> #include <cstring> #include < ...
随机推荐
- 在linux中安装redis
1.安装gcc环境: yum install gcc-c++ 2.下载redis的源码包,把源码包上传到linux服务器 3.解压源码包 : tar -zxvf redis-3.0.0.tar.gz ...
- jdbc学习一半的代码
用java连接MySQL的准备工作 1.下载MySQL(了解MySQL的基本语法) 2.下载java的和MySQL的连接 3.在程序中加入2中下载的jar包 写java程序连接数据库的基本步骤: 1. ...
- Day4-A-最短路 HDU2544
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助 ...
- JAVA虚拟机:内存回收策略及算法
java虚拟机中的程序计数器区.虚拟机栈区.本地方法栈区3个区域是随着线程的创建而创建,随着线程的结束而结束时,内存自然得到回收,所以这三个区域不需要过多考虑内存的回收问题. java虚拟机中的方法区 ...
- (十二)微信小程序实现登陆页面+登陆逻辑
微信小程序实现登陆页面 实现上面两个页面 第一个页面 <view> <!-- 上侧部分 --> <view class="top-view"> ...
- 学习进度-04 Scala的学习
在Scala中,主函数的定义是def main(args: Array[String]),Scala中必须使用对象方法 1.变量: Scala中的变量分为两种var和val. 例如:def main( ...
- 一个平凡计算机爱好者的linux进步之路
我从小就对计算机特别感兴趣,小的时候梦想就是拥有一台属于自己的电脑.无奈那时候农村条件限制,学校.家庭都不配备电脑.只好悄悄的跑去网吧研究一番,但毕竟时间有限,生活费有限,也不可能经常去网吧玩,在网吧 ...
- crashpad 应用程序异常解决方案
衡量某个应用程序的稳定性的一个重要指标即它自身的崩溃率的统计,但是如何判断应用程序崩溃,且上报崩溃产生的dmp文件进行分析? google提供了一套开源的系统 Crashpad,详细了解参见 http ...
- Java日志相关概述
日志是代码调试.生产运维必备工具,基本所有软件都会有日志记录. 1.常用日志框架介绍 1.Logging jdk1.5自带日志工具类,位于java.util.logging; 2.Log4j 市场占有 ...
- 收藏!阿里云maven镜像配置文件
<?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Soft ...