UVA - 11149 Power of Matrix(矩阵倍增)
题意:已知N*N的矩阵A,输出矩阵A + A2 + A3 + . . . + Ak,每个元素只输出最后一个数字。
分析:
A + A2 + A3 + . . . + An可整理为下式,

从而可以用log2(n)的复杂度算出结果。
注意:输入时把矩阵A的每个元素对10取余,因为若不处理,会导致k为1的时候结果出错。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 10;
const double pi = acos(-1.0);
const int MAXN = 40 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int n;
struct Matrix{
int r, c, matrix[MAXN][MAXN];
Matrix(int rr, int cc):r(rr), c(cc){
memset(matrix, 0, sizeof matrix);
}
};
Matrix add(Matrix a, Matrix b){
Matrix ans(n, n);
for(int i = 0; i < a.r; ++i){
for(int j = 0; j < a.c; ++j){
ans.matrix[i][j] = ((a.matrix[i][j] % MOD) + (b.matrix[i][j] % MOD)) % MOD;
}
}
return ans;
}
Matrix mul(Matrix a, Matrix b){
Matrix ans(a.r, b.c);
for(int i = 0; i < a.r; ++i){
for(int j = 0; j < b.c; ++j){
for(int k = 0; k < a.c; ++k){
(ans.matrix[i][j] += ((a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD)) % MOD) %= MOD;
}
}
}
return ans;
}
Matrix QPOW(Matrix a, int k){
Matrix ans(n, n);
for(int i = 0; i < n; ++i){
ans.matrix[i][i] = 1;
}
while(k){
if(k & 1) ans = mul(ans, a);
a = mul(a, a);
k >>= 1;
}
return ans;
}
Matrix solve(Matrix tmp, int k){
if(k == 1) return tmp;
Matrix t = solve(tmp, k >> 1);
Matrix ans = add(t, mul(QPOW(tmp, k >> 1), t));
if(k & 1) ans = add(ans, QPOW(tmp, k));
return ans;
}
int main(){
int k;
while(scanf("%d%d", &n, &k) == 2){
if(n == 0) return 0;
Matrix tmp(n, n);
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
scanf("%d", &tmp.matrix[i][j]);
tmp.matrix[i][j] %= MOD;
}
}
Matrix ans = solve(tmp, k);
for(int i = 0; i < ans.r; ++i){
for(int j = 0; j < ans.c; ++j){
if(j) printf(" ");
printf("%d", ans.matrix[i][j]);
}
printf("\n");
}
printf("\n");
}
return 0;
}
UVA - 11149 Power of Matrix(矩阵倍增)的更多相关文章
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- UVA 11149 Power of Matrix 快速幂
题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...
- UVA 11149 Power of Matrix 构造矩阵
题目大意:意思就是让求A(A是矩阵)+A2+A3+A4+A5+A6+······+AK,其中矩阵范围n<=40,k<=1000000. 解题思路:由于k的取值范围很大,所以很自然地想到了二 ...
- UVA 11149 Power of Matrix
矩阵快速幂. 读入A矩阵之后,马上对A矩阵每一个元素%10,否则会WA..... #include<cstdio> #include<cstring> #include< ...
- UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11149 题意: 给出矩阵A,求出A^1 + A^2 …… + A^k . 题解: 1.可知:A^1 + A^2 …… + A ...
- UVA 11149.Power of Matrix-矩阵快速幂倍增
Power of Matrix UVA - 11149 代码: #include <cstdio> #include <cstring> #include < ...
随机推荐
- HTML多条件筛选商品
今天同事接到一个类似于JD的按条件筛选商品的功能,同事把这个锅出色的甩给了我,俺就勉为其难的解决了这个问题. 首先我们来理清一下思路: 1.条件切换时,tab选项卡肯定要跟着切换,而且只是一个大类条件 ...
- Day2-O-Coloring a Tree CodeForces-902B
You are given a rooted tree with n vertices. The vertices are numbered from 1 to n, the root is the ...
- 【富文本、JS】将接口传来的全部纯URL替换为富文本插件能识别到的img标签
replaceURLWithImage (text) { var a = /(\b(https?|ftp|file):\/\/[-A-Z0-9+&@#\/%?=~_|!:,.;]*[-A-Z0 ...
- 十九 Listener
Listener 监听器 一 监听器内部原理:其实就是接口回调 需求:A在执行循环,当循环到5的时候,通知B 事先先把某一个对象传递给A ,当A执行到5的时候,通过这个对象来调用B中的方法 但是不是直 ...
- 第一单元总结:基于基础语言、继承和接口的简单OOP
前情提要 到目前为止,OO课程已经完成了前三次的作业,分别为: 第一次作业:简单多项式的构造和求导.[正则表达式][数据结构][排序] 第二次作业:含三角函数因子的复杂多项式的构造.求导和化简.[递归 ...
- sessionManager配置
在sessionManager配置的时候,有两个属性, 在这个类中,cacheManager是要注入到sessionDao中的,但要求sessionDao实现CacheManagerAware接口 C ...
- 虚拟机上安装SVN服务
服务器端安装SVN(centos)1.yum install subversion2.svn的相关配置1创建一个SVN仓库(所有项目存放与管理)mkdir -p /svndata/projects2. ...
- 安装数据库Typical path for xclock: /usr/X11R6/bin/xclock 错误问题
[oracle@localhost database]$ ./runInstaller Starting Oracle Universal Installer... Checking Temp spa ...
- AngularJS1.X版本基础
AngularJS 知识点: DataBinding Providers Validators Directives Controllers Modules Expressions Factori ...
- python format使用方法
#使用format 方法进行格式化 print("The number {1:} in hex is: {1:#x}, the number {0:} in oct is {0:o}&quo ...