1 定义

百度百科的定义:

它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类地表真实像元总数与被误分成该类像元总数之积对所有类别求和的结果,再除以总像元数的平方减去某一类中地表真实像元总数与该类中被误分成该类像元总数之积对所有类别求和的结果所得到的。

这对于新手而言可能比较难理解。什么混淆矩阵?什么像元总数?

我们直接从算式入手:

\[k = \frac{p_0-p_e}{1-p_e}
\]

\(p_0\)是每一类正确分类的样本数量之和除以总样本数,也就是总体分类精度

假设每一类的真实样本个数分别为\(a_1,a_2,...,a_c\)

而预测出来的每一类的样本个数分别为\(b_1,b_2,...,b_c\)

总样本个数为n

则有:\(p_e=a_1×b_1+a_2×b_2+...+a_c×b_c / n×n\)

1.1 简单例子

学生考试的作文成绩,由两个老师给出 好、中、差三档的打分,现在已知两位老师的打分结果,需要计算两位老师打分之间的相关性kappa系数:



从上面的公式中,可以知道我们其实只需要计算\(p_0 ,p_e\)即可:

Po = (10+35+15) / 87 = 0.689

a1 = 10+2+8 = 20; a2 = 5+35+5 = 45; a3 = 5+2+15 = 22;

b1 = 10+5+5 = 20; b2 = 2+35+2 = 39; b3 = 8+5+15 = 28;

Pe = (a1b1 + a2b2 + a3b3) / (8787) = 0.455

K = (Po-Pe) / (1-Pe) = 0.4293578

例子引用来自博客,可以说提到kappa网上到处都是两个老师的例子,哈哈

2 指标解释

kappa计算结果为[-1,1],但通常kappa是落在 [0,1] 间

第一种分析准则--可分为五组来表示不同级别的一致性:

0.0~0.20极低的一致性(slight)

0.21~0.40一般的一致性(fair)

0.41~0.60 中等的一致性(moderate)

0.61~0.80 高度的一致性(substantial)

0.81~1几乎完全一致(almost perfect)

3 python实现(可直接用于深度网络中)

def eval_qwk_lgb_regr(y_true, y_pred):
# Fast cappa eval function for lgb.
dist = Counter(reduce_train['accuracy_group'])
for k in dist:
dist[k] /= len(reduce_train)
reduce_train['accuracy_group'].hist()
# reduce_train['accuracy_group']将会分成四组
acum = 0
bound = {}
for i in range(3):
acum += dist[i]
bound[i] = np.percentile(y_pred, acum * 100) def classify(x):
if x <= bound[0]:
return 0
elif x <= bound[1]:
return 1
elif x <= bound[2]:
return 2
else:
return 3 y_pred = np.array(list(map(classify, y_pred))).reshape(y_true.shape)
return 'cappa', cohen_kappa_score(y_true, y_pred, weights='quadratic'), True

以上代码是本人在kaggle比赛中使用的,因为kappa系数的算法非常好写,但是又要根据实际问题进行微小的调整,所以就不修改了。如果能提供帮助自然好,如果没有头绪的话,就去第一二章节好好看看,理解一下kappa系数的算法。

4 总结

其实kappa系数就是一种检验一致性的方法,可以用在深度网络中的metric函数中,也可以用在统计学上的一致性检验上。

Kappa(cappa)系数只需要看这一篇就够了,算法到python实现的更多相关文章

  1. 贝叶斯优化(Bayesian Optimization)只需要看这一篇就够了,算法到python实现

    贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷 ...

  2. 转载:Docker入门只需看这一篇就够了

    最近项目中需要用到 Docker 打包,于是上网查找资料学习了 Docker 的基本命令,记录一下自己遇到的一些错误. 准备开始自己写,结果看到了阮一峰老师的文章,瞬间就没有写下去的动力了,转载大佬的 ...

  3. JVM内存模型你只要看这一篇就够了

    JVM内存模型你只要看这一篇就够了 我是一只孤傲的鱼鹰 让我们不厌其烦的从内存模型开始说起:作为一般人需要了解到的,JVM的内存区域可以被分为:线程栈,堆,静态方法区(实际上还有更多功能的区域,并且这 ...

  4. windows server 2019 域控批量新增不用,只看这一篇就够了,别的不用看

    windows server 2019 域控批量新增不用,只看这一篇就够了,别的不用看 1. 新建excel表格 A B C D E 姓 名 全名 登录名 密码 李 四 李四 李四 test123!@ ...

  5. 关于 Docker 镜像的操作,看完这篇就够啦 !(下)

    紧接着上篇<关于 Docker 镜像的操作,看完这篇就够啦 !(上)>,奉上下篇 !!! 镜像作为 Docker 三大核心概念中最重要的一个关键词,它有很多操作,是您想学习容器技术不得不掌 ...

  6. Java中的多线程=你只要看这一篇就够了

    如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个话其 ...

  7. [转帖]nginx学习,看这一篇就够了:下载、安装。使用:正向代理、反向代理、负载均衡。常用命令和配置文件

    nginx学习,看这一篇就够了:下载.安装.使用:正向代理.反向代理.负载均衡.常用命令和配置文件 2019-10-09 15:53:47 冯insist 阅读数 7285 文章标签: nginx学习 ...

  8. 2019-5-25-win10-uwp-win2d-入门-看这一篇就够了

    title author date CreateTime categories win10 uwp win2d 入门 看这一篇就够了 lindexi 2019-5-25 20:0:52 +0800 2 ...

  9. 什么是 DevOps?看这一篇就够了!

    本文作者:Daniel Hu 个人主页:https://www.danielhu.cn/ 目录 一.前因 二.记忆 三.他们说-- 3.1.Atlassian 回答"什么是 DevOps?& ...

随机推荐

  1. 005.Ansible de palybook简单使用

    一 Ansible Playbook简介 ansbile-playbook是一系列ansible命令的集合,利用yaml 语言编写.playbook命令根据自上而下的顺序依次执行.同时,playboo ...

  2. 2019-2020-1 20199308《Linux内核原理与分析》第四周作业

    <Linux内核分析> 第三章 MenuOS的构造 3.1 Linux内核源代码简介 操作系统的"两把宝剑" 中断上下文:保存现场和恢复现场 进程上下文 目录结构 ar ...

  3. Python 替换文本中的某些词语

    https://stackoverflow.com/questions/39086/search-and-replace-a-line-in-a-file-in-python from tempfil ...

  4. 【Linux常见命令】cut命令

    cut - remove sections from each line of files 参数: -b 可以按字节来查看文件中的内容 -b参数用在中文上,容易出现乱码问题.因为中文字符一个字符占两个 ...

  5. 15个Nodejs应用场景

    15个Nodejs应用场景 我们已经对Nodejs有了初步的了解,接下来看看Nodejs的应用场景. 2.1 Web开发:Express + EJS + Mongoose/MySQL express  ...

  6. 二.Spring boot食用指南:结合Jpa(Hibernate) 构建MVC架构

    1.POM依赖 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w ...

  7. IEEE 754标准--维基百科

    IEEE二进制浮点数算术标准(IEEE 754) 是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用.这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denorm ...

  8. CodeForces-1058B B. Vasya and Cornfield

    这题,我真的不知道题解是啥,自己看代码吧. #include<iostream> using namespace std; int main() { int n, d,m,i,x,y; c ...

  9. MySQL 索引、视图

    1.索引 什么是索引 一个索引是存储在表中的数据结构,索引在表的列名上创建.索引中包含了一个列的值,这些值保存在一个数据结构中 索引优缺点 索引大大提高了查询速度 会降低更新表的速度,如对表进行INS ...

  10. python(递归函数)

    1.描述: 递归函数:在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 2.递归函数特性: 必须有一个明确的结束条件: 每次进入更深一层递归时,问题规模相比上次递归 ...