数据大致内容及格式

194.237.142.21 - - [18/Sep/2013:06:49:18 +0000] "GET /wp-content/uploads/2013/07/rstudio-git3.png HTTP/1.1" 304 0 "-" "Mozilla/4.0 (compatible;)"
183.49.46.228 - - [18/Sep/2013:06:49:23 +0000] "-" 400 0 "-" "-"
163.177.71.12 - - [18/Sep/2013:06:49:33 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
163.177.71.12 - - [18/Sep/2013:06:49:36 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
101.226.68.137 - - [18/Sep/2013:06:49:42 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
101.226.68.137 - - [18/Sep/2013:06:49:45 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
60.208.6.156 - - [18/Sep/2013:06:49:48 +0000] "GET /wp-content/uploads/2013/07/rcassandra.png HTTP/1.0" 200 185524 "http://cos.name/category/software/packages/" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
……
……

统计PV(PageViews)

就是统计日志文件中有多少条数据

关于点击流日志的各种指标可以查看【Hadoop离线基础总结】网站流量日志数据分析系统

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object PvCount {
def main(args: Array[String]): Unit = { //获取SparkConf
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("PV-Count").set("spark.driver.host", "localhost")
//创建SparkContext
val sparkContext = new SparkContext(sparkConf)
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//统计数量
val count = fileRDD.count() println("一共有"+count+"行数据") sparkContext.stop()
}
}

经统计后得出,数据有 14619条,也就是说PV量为14619


统计UV(Unique Visitor)

实际工作中,一般推荐用cookie而不是IP地址来对UV进行统计,但这里数据只有IP地址,所以目前就按IP算

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object UvCount {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf = new SparkConf().setAppName("UV-Count").setMaster("local[2]").set("spark.driver.host","localhost")
//创建SparkContext
val sparkContext = new SparkContext(sparkConf)
//筛选日志
sparkContext.setLogLevel("WARN")
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//从所有数据中剔除掉不需要的数据,只拿到IP地址
val getIpRDD: RDD[String] = fileRDD.map(_.split(" ")(0))
//对IP地址进行去重,去重后数据减少,就可以将分区缩减为1个
val distinctedRDD: RDD[String] = getIpRDD.distinct(1)
//对去重后的数据进行计数统计
val count: Long = distinctedRDD.count() println(count) sparkContext.stop()
}
}

统计得出UV量为1050


求取TopN

有两种方法可以用,take()top() 都可以

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object GetTopN {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf = new SparkConf().setMaster("local[2]").set("spark.driver.host", "localhost").setAppName("getTopN")
//获取SparkContext
val sparkContext: SparkContext = new SparkContext(sparkConf)
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//筛选日志
sparkContext.setLogLevel("WARN") //194.237.142.21 - - [18/Sep/2013:06:49:18 +0000] "GET /wp-content/uploads/2013/07/rstudio-git3.png HTTP/1.1" 304 0 "-" "Mozilla/4.0 (compatible;)"
//以上是数据格式,首先对数据进行切割
val valueRDD: RDD[Array[String]] = fileRDD.map(x => x.split(" "))
/*
数据切割后的形式
194.237.142.21
-
-
[18/Sep/2013:06:49:18
+0000]
"GET
/wp-content/uploads/2013/07/rstudio-git3.png
HTTP/1.1"
304
0
"-"
"Mozilla/4.0
(compatible;)"
*/
//日志数据中,下标为10的数据为我们要求取的数据(http_refer),所以切割后数组中少于10条的为无效数据
//先将无效数据过滤掉
val filterRDD: RDD[Array[String]] = valueRDD.filter(arr => arr.length > 10)
//获取每一个http_refer的url,并计作一次
val urlAndOne: RDD[(String, Int)] = filterRDD.map(x => (x(10), 1))
//将url相同的次数相加
val reduceRDD: RDD[(String, Int)] = urlAndOne.reduceByKey(_ + _)
//将拿到的url+次数进行排序,false为降序,不填或true为升序
val sortRDD: RDD[(String, Int)] = reduceRDD.sortBy(x => x._2, false)
//求取TopN,两种方法take(N)或者top(N)
val topRDD: Array[(String, Int)] = sortRDD.take(10) println(topRDD.toBuffer)
sparkContext.stop()
}
}

拿到控制台结果为:

ArrayBuffer(("-",5205), (“http://blog.fens.me/category/hadoop-action/”,547), (“http://blog.fens.me/”,377), (“http://blog.fens.me/wp-admin/post.php?post=2445&action=edit&message=10”,360), (“http://blog.fens.me/r-json-rjson/”,274), (“http://blog.fens.me/angularjs-webstorm-ide/”,271), (“http://blog.fens.me/wp-content/themes/silesia/style.css”,228), (“http://blog.fens.me/nodejs-express3/”,198), (“http://blog.fens.me/hadoop-mahout-roadmap/”,182), (“http://blog.fens.me/vps-ip-dns/”,176))

【Spark】通过Spark实现点击流日志分析的更多相关文章

  1. 大数据学习——点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上

    点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上 1需求说明 点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上 2需求分 ...

  2. 基于Kafka+Spark Streaming+HBase实时点击流案例

    背景 Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver- ...

  3. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  4. Spark 实践——基于 Spark Streaming 的实时日志分析系统

    本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计, ...

  5. .Spark Streaming(上)--实时流计算Spark Streaming原理介

    Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...

  6. spark提交异常日志分析

    java.lang.NoSuchMethodError: org.apache.spark.sql.SQLContext.sql(Ljava/lang/String;)Lorg/apache/spar ...

  7. Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续)

    Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过 ...

  8. Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析

    Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28 ...

  9. 024 关于spark中日志分析案例

    1.四个需求 需求一:求contentsize的平均值.最小值.最大值 需求二:请各个不同返回值的出现的数据 ===> wordCount程序 需求三:获取访问次数超过N次的IP地址 需求四:获 ...

随机推荐

  1. ASE课程总结 by 冯晓云

    开始的开始,采访往届ASE班的blog:http://www.cnblogs.com/legs/p/4894362.html 和北航软工M1检查:http://www.cnblogs.com/legs ...

  2. 一篇文章快速搞懂Redis的慢查询分析

    什么是慢查询? 慢查询,顾名思义就是比较慢的查询,但是究竟是哪里慢呢?首先,我们了解一下Redis命令执行的整个过程: 发送命令 命令排队 命令执行 返回结果 在慢查询的定义中,统计比较慢的时间段指的 ...

  3. Charles抓包——弱网测试(客户端)

    基础知识 网络延迟:网络延时指一个数据包从用户的计算机发送到网站服务器,然后再立即从网站服务器返回用户计算机的来回时间.通常使用网络管理工具PING(Packet Internet Grope)来测量 ...

  4. 《并发编程的艺术》阅读笔记之Volatile

    来源 在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的.而在当前的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不 ...

  5. 理解java容器底层原理--手动实现LinkedList

    Node java 中的 LIinkedList 的数据结构是链表,而链表中每一个元素是节点. 我们先定义一下节点: package com.xzlf.collection; public class ...

  6. MySQL如何创建一个好索引?创建索引的5条建议【宇哥带你玩转MySQL 索引篇(三)】

    MySQL如何创建一个好索引?创建索引的5条建议 过滤效率高的放前面 对于一个多列索引,它的存储顺序是先按第一列进行比较,然后是第二列,第三列...这样.查询时,如果第一列能够排除的越多,那么后面列需 ...

  7. nav破解

    https://blog.csdn.net/qq_40529395/article/details/78839357

  8. JVM原理与深度调优(三)

    jvm垃圾收集算法 1.引用计数算法每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收.此方法简单,无法解决对象相互循环引用的问题.还有一个问题是如何解决精准计 ...

  9. 【Linux常见命令】sort命令

    sort - sort lines of text files sort命令用于将文本文件内容加以排序. sort可针对文本文件的内容,以行为单位来排序. 语法: sort [OPTION]... [ ...

  10. 记django从1.11.7升级到2.0.1

    第一步:升级django之后记录下django等其他相关依赖包的版本号. 在terminal中输入 pip freeze, 获取所有包的版本号.为了在升级不成功后可以回到低版本. 第二步:卸载再重装d ...