【Luogu】P4234最小差值生成树(LCT)
能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的。
本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起来。
放个图。

比如这是原边。
然后我们搞成这样。

那个小点就是原来那条边啦。
然后我们要连边的时候就连成这样

比如小点的编号为new,我们就要link(from,new),link(to,new)
切掉的时候就cut(from,new)cut(to,new)。
之后呢,我们令splay的每个节点维护以自己为根的splay中连的权值最小的边是哪条,这样连成一个环的时候我们就可以很方便的把环中最小的那个边切掉,就可以维护啦
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cctype>
#include<queue>
#define maxn 500000
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int from,to,val;
bool operator <(const Edge a){
return val<a.val;
}
}edge[maxn]; bool cmp(Edge a,Edge b){ return a.val<b.val; }
int stack[maxn],top; struct Splay{
struct Node{
int e[],fa,val,mini,tag,id;
}tree[maxn];
inline int iden(int x){ return x==tree[tree[x].fa].e[]; }
inline bool isroot(int x){ return x!=tree[tree[x].fa].e[]&&x!=tree[tree[x].fa].e[]; }
inline void update(int x){
tree[x].mini=tree[x].id;
if(edge[tree[tree[x].e[]].mini].val<edge[tree[x].mini].val) tree[x].mini=tree[tree[x].e[]].mini;
if(edge[tree[tree[x].e[]].mini].val<edge[tree[x].mini].val) tree[x].mini=tree[tree[x].e[]].mini;
}
inline void connect(int x,int fa,int how){ tree[x].fa=fa; tree[fa].e[how]=x; }
inline void reverse(int x){
swap(tree[x].e[],tree[x].e[]);
tree[x].tag^=;
}
inline void pushdown(int x){
if(tree[x].tag==) return;
if(tree[x].e[]) reverse(tree[x].e[]);
if(tree[x].e[]) reverse(tree[x].e[]);
tree[x].tag=;
}
void rotate(int x){
int y=tree[x].fa,r=tree[y].fa;
int sony=iden(x),sonr=iden(y);
tree[x].fa=r; if(!isroot(y)) tree[r].e[sonr]=x;
int b=tree[x].e[sony^];
connect(b,y,sony);
connect(y,x,sony^);
update(y);
}
inline void pushto(int x){
top=;
while(!isroot(x)){
stack[++top]=x;
x=tree[x].fa;
}
pushdown(x);
while(top){
int from=stack[top--];
pushdown(from);
}
}
inline void splay(int x){
pushto(x);
while(!isroot(x)){
if(!isroot(tree[x].fa))
if(iden(x)==iden(tree[x].fa)) rotate(tree[x].fa);
else rotate(x);
rotate(x);
}
update(x);
}
void access(int x){
int last=;
while(x){
splay(x);
tree[x].e[]=last;
update(x);
last=x; x=tree[x].fa;
}
return;
}
inline void makeroot(int x){
access(x);
splay(x);
reverse(x);
}
inline void split(int x,int y){
makeroot(x);
access(y);
splay(y);
}
inline void link(int x,int y){
split(x,y);
tree[x].fa=y;
}
inline void cut(int x,int y){
split(x,y);
if(tree[y].e[]!=x||tree[x].e[]) return;
tree[x].fa=tree[y].e[]=;
}
inline int findroot(int x){
access(x);
splay(x);
while(tree[x].e[]) x=tree[x].e[];
return x;
}
}s; bool vis[maxn]; int main(){
int n=read(),m=read();
for(int i=;i<=m;++i) edge[i]=(Edge){read(),read(),read()};
sort(edge+,edge+m+,cmp); edge[].val=0x7fffffff;
for(int i=;i<=m;++i){
s.tree[i+n].val=edge[i].val;
s.tree[i+n].id=i;
}
int cnt=,now=;
int ans=0x7fffffff;
for(int i=;i<=m;++i){
int from=edge[i].from,to=edge[i].to,val=edge[i].val;
if(from==to){
vis[i]=;
continue;
}
//printf("D");
if(s.findroot(from)==s.findroot(to)){
s.split(from,to);
int mini=s.tree[to].mini;
//printf("%d>>>>\n",mini);
s.cut(edge[mini].from,mini+n);
s.cut(edge[mini].to,mini+n);
vis[mini]=;
cnt--;
} s.link(from,i+n); s.link(to,i+n);
cnt++;
if(cnt>=n-){
while(vis[now]) now++;//printf("S");
ans=min(ans,val-edge[now].val);
} }
printf("%d\n",ans);
return ;
}
【Luogu】P4234最小差值生成树(LCT)的更多相关文章
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
- Luogu P4234 最小差值生成树
题意 给定一个 \(n\) 个点 \(m\) 条边的有权无向图,求出原图的一棵生成树使得该树上最大边权与最小边权的差值最小. \(\texttt{Data Range:}1\leq n\leq 5\t ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- Luogu 4234 最小差值生成树 - LCT 维护链信息
Solution 将边从小到大排序, 添新边$(u, v)$时 若$u,v$不连通则直接添, 若连通则 把链上最小的边去掉 再添边. 若已经加入了 $N - 1$条边则更新答案. Code #incl ...
- luogu 4234 最小差值生成树 LCT
感觉码力严重下降~ #include <bits/stdc++.h> #define N 400006 #define inf 1000000000 #define setIO(s) fr ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- 洛谷P4234 最小差值生成树(LCT,生成树)
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...
随机推荐
- 洛谷 P1855 榨取kkksc03
题目描述 洛谷2的团队功能是其他任何oj和工具难以达到的.借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本的搭建oj并高效率的完成训练计划. 为什么说是搭建oj呢?为什么高效呢? 因为,你可以上 ...
- 【转载】Cesium基础使用介绍
既然给我发了参与方式,不参加似乎有点不给人面子,反正也没多少人看我的博客,那我就试试吧,也欢迎大家自己参与:2017年度全网原创IT博主评选活动投票:http://www.itbang.me/goVo ...
- [VC]获取本地程序的版本信息信息
CString CQwerApp::IS_GetAppVersion(char *AppName) { ////需要加上version.lib在link里 CString AppVersion; // ...
- GentleNet使用之详细图解[语法使用增强版]
目录 第一章 开发环境 第二章 简介 第三章 Gentle.Net-1.5.0 下载文件包介绍 第四章 使用步骤 第五章 源码下载 第一章.开发环境: Vs 2010 + Sql 2005 + Gen ...
- 2018.2.11 JS的定时器制作
定时器 1.定时器定义 var time = window.setInterval("执行名词",间隔时间) 关闭定时器 clearInterval(定时器名称) 倒计时定时器 s ...
- 【转】 树莓派初次启动攻略for Mac
http://blog.csdn.net/rk2900/article/details/8632713/ 树莓派初次启动攻略for Mac made by Rk 感谢浙江大学<嵌入式系统> ...
- 安装搭配VUE使用的UI框架ElementUI
可以搭配vue的UI框架有几个,我用的是element-ui,现在呢,我要在复习一遍 1.vue init webpack-simple element-ui2.cd element-ui3.npm ...
- 7.Props向子组件传递数据
组件实例的作用域是孤立的.这意味着不能并且不应该在子组件的模板内直接引用父组件的数据. 可以使用 props 把数据传给子组件. for-child-msg="aaa" , fo ...
- STM32F042开发板学习实践
之前有粗略地学习过stm32F103的理论知识,但仅GPIO的配置.时钟配置就让人望而却步.现在手头有Nucleo STM32F042的开发板,而且ST已经推出STM32CubeMx图形化的工具软件, ...
- iOS8之后,UITableViewRowAction实现滑动多个按钮
#pragma mark - View lifeCycle - (void)viewDidLoad { [super viewDidLoad]; self.view.backgroundColor = ...