SpringBoot 2.0 整合sharding-jdbc中间件,实现数据分库分表
本文源码:GitHub·点这里 || GitEE·点这里
一、水平分割
1、水平分库
1)、概念:
以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。
2)、结果
每个库的结构都一样;数据都不一样;
所有库的并集是全量数据;
2、水平分表
1)、概念
以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。
2)、结果
每个表的结构都一样;数据都不一样;
所有表的并集是全量数据;
二、Shard-jdbc 中间件
1、架构图

2、特点
1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。
2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。
5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。
三、项目演示
1、项目结构

springboot 2.0 版本
druid 1.1.13 版本
sharding-jdbc 3.1 版本
2、数据库配置



一台基础库映射(shard_one)
两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two
3、核心代码块
- 数据源配置文件
spring:
datasource:
# 数据源:shard_one
dataOne:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_two
dataTwo:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_three
dataThree:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
- 数据库分库策略
/**
* 数据库映射计算
*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分库算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "ds_" + ((hash % 2) + 2) ;
}
}
- 数据表1分表策略
/**
* 分表算法
*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_one_" + (hash % 5+1);
}
}
- 数据表2分表策略
/**
* 分表算法
*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_two_" + (hash % 5+1);
}
}
- 数据源集成配置
/**
* 数据库分库分表配置
*/
@Configuration
public class ShardJdbcConfig {
// 省略了 druid 配置,源码中有
/**
* Shard-JDBC 分库配置
*/
@Bean
public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
@Autowired DruidDataSource dataTwoSource,
@Autowired DruidDataSource dataThreeSource) throws Exception {
ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
shardJdbcConfig.setDefaultDataSourceName("ds_0");
Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
dataMap.put("ds_0",dataOneSource) ;
dataMap.put("ds_2",dataTwoSource) ;
dataMap.put("ds_3",dataThreeSource) ;
Properties prop = new Properties();
return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
}
/**
* Shard-JDBC 分表配置
*/
private static TableRuleConfiguration getTableRule01() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_one");
result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
return result;
}
private static TableRuleConfiguration getTableRule02() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_two");
result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
return result;
}
}
- 测试代码执行流程
@RestController
public class ShardController {
@Resource
private ShardService shardService ;
/**
* 1、建表流程
*/
@RequestMapping("/createTable")
public String createTable (){
shardService.createTable();
return "success" ;
}
/**
* 2、生成表 table_one 数据
*/
@RequestMapping("/insertOne")
public String insertOne (){
shardService.insertOne();
return "SUCCESS" ;
}
/**
* 3、生成表 table_two 数据
*/
@RequestMapping("/insertTwo")
public String insertTwo (){
shardService.insertTwo();
return "SUCCESS" ;
}
/**
* 4、查询表 table_one 数据
*/
@RequestMapping("/selectOneByPhone/{phone}")
public TableOne selectOneByPhone (@PathVariable("phone") String phone){
return shardService.selectOneByPhone(phone);
}
/**
* 5、查询表 table_one 数据
*/
@RequestMapping("/selectTwoByPhone/{phone}")
public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){
return shardService.selectTwoByPhone(phone);
}
}
四、项目源码
GitHub·地址
https://github.com/cicadasmile/middle-ware-parent
GitEE·地址
https://gitee.com/cicadasmile/middle-ware-parent

SpringBoot 2.0 整合sharding-jdbc中间件,实现数据分库分表的更多相关文章
- (二)基于shard-jdbc中间件,实现数据分库分表
基于shard-jdbc中间件,实现数据分库分表 Sharding-JDBC简介 Sharding配置示意图 1.水平分割 1.1 水平分库 1.2 水平分表 2.Shard-jdbc中间件 2.1 ...
- sharding demo 读写分离 U (分库分表 & 不分库只分表)
application-sharding.yml sharding: jdbc: datasource: names: ds0,ds1,dsx,dsy ds0: type: com.zaxxer.hi ...
- SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表实践
一.序言 在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量.当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术. 本文将基于Spri ...
- mysql大数据解决方案--分表分库(0)
引言 对于一个大型的互联网应用,海量数据的存储和访问成为了系统设计的瓶颈问题,对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式. •水 ...
- Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表
Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...
- 【ShardingSphere技术专题】「ShardingJDBC」SpringBoot之整合ShardingJDBC实现分库分表(JavaConfig方式)
前提介绍 ShardingSphere介绍 ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC.Sharding-Proxy和Shardin ...
- Sharding-JDBC基本使用,整合Springboot实现分库分表,读写分离
结合上一篇docker部署的mysql主从, 本篇主要讲解SpringBoot项目结合Sharding-JDBC如何实现分库分表.读写分离. 一.Sharding-JDBC介绍 1.这里引用官网上的介 ...
- SpringBoot+Mybatis-Plus整合Sharding-JDBC5.1.1实现单库分表【全网最新】
一.前言 小编最近一直在研究关于分库分表的东西,前几天docker安装了mycat实现了分库分表,但是都在说mycat的bug很多.很多人还是倾向于shardingsphere,其实他是一个全家桶,有 ...
- 三、SpringBoot 整合mybatis 多数据源以及分库分表
前言 说实话,这章本来不打算讲的,因为配置多数据源的网上有很多类似的教程.但是最近因为项目要用到分库分表,所以让我研究一下看怎么实现.我想着上一篇博客讲了多环境的配置,不同的环境调用不同的数据库,那接 ...
随机推荐
- Comparison method violates its general contract! 异常原因
项目运行期间出现Comparison method violates its general contract!异常,网上查阅了一下,原因还是比较明确的: Collections.sort(list, ...
- 1 Maven简介
一.构建(build) 清理.编译.测试.打包.部署等一系列操作. 二.maven介绍: maven是一个强大的构建工具,能够帮助我们自动化构建过程:从清理(clean).编译(com ...
- RecyclerView 可以与CollapsingToolbarLayout一起使用
Item 布局 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:and ...
- Label标签 自动触发onclick,点击内部的Input
最近项目遇到了一个bug,点击外层元素会直接触发元素内部的input框.(外层元素用的是label包裹的).找了很久才发现是label标签造成的. label定义和用法: label 标签为 inpu ...
- MysqlNDB集群配置与管理
为了避免不必要的资源分配,默认情况下是不启动ndbcluster引擎. 在管理节点,配置config.ini,注意请将空的[MYSQLD]的数量>2倍的sql节点数 当config.ini发生变 ...
- Codeforces Round #178 (Div. 2) B. Shaass and Bookshelf —— DP
题目链接:http://codeforces.com/contest/294/problem/B B. Shaass and Bookshelf time limit per test 1 secon ...
- 自动化测试框架selenium+java+TestNG——读取csv文件
读取csv文件可以直接读取,也可以使用javacsv.jar,后者比较简单,这个也可以变相认为是对表格的处理,我们可以在表格中做好数据,存储成csv格式的文件,后续对xlsx表格的操作抽个时间再记录下 ...
- YCSB-mapkeeper
首先 https://github.com/brianfrankcooper/YCSB/issues/885 最终是使用ycsb-0.1.4 版本进行,这个版本自带jar包 https://githu ...
- dancing link 精确覆盖 重复覆盖 (DLX)
申明:因为转载的没有给出转载链接,我就把他的链接附上,请尊重原创: http://www.cnblogs.com/-sunshine/p/3358922.html 如果谁知道原创链接 给一下,请尊重原 ...
- JUC类图
JUC的类图总览.