题目传送

排序看一看。

关键点在于发现性质:

算一个点的贡献时:

1.与后一个有重叠。$$当 a[i] + r >= a[i + 1] + l, 即 r - l >= a[i + 1] - a[i] 时$$a[i] 与 a[i+1] 重叠的部分,都算在a[i+1]里,则a[i]的贡献为:a[i+1] - a[i]

2.无重叠。r - l + 1

3.a[n]的贡献一定是r - l + 1

因此再把差值排序一下二分答案O(1)算出即可

const int maxn = 1e5 + 5;
int n, m, q;
ll a[maxn], d[maxn], sum[maxn]; int main() {
read(n);
rep(i, 1, n) read(a[i]);
sort(a + 1, a + 1 + n);
m = unique(a + 1, a + 1 + n) - a - 1; rep(i, 1, m - 1) d[i] = a[i + 1] - a[i];
sort(d + 1, d + m);
rep(i, 1, m - 1) sum[i] = sum[i - 1] + d[i]; for (read(q); q; q--) {
ll l, r;
read(l), read(r);
int pos = upper_bound(d + 1, d + m, r - l) - d;
cout << sum[pos - 1] + (r - l + 1) * (m - pos + 1) << " ";
}
return 0;
}

Codeforces 1119D(贡献计算)的更多相关文章

  1. Codeforces 360C DP 计算贡献

    题意:给你一个长度为n的字符串,定义两个字符串的相关度为两个串对应的子串中第一个串字典序大于第二个串的个数.现在给你相关度,和第二个串,问满足条件的第一个串有多少个? 思路:设dp[i][j]为填了前 ...

  2. Codeforces 1167F(计算贡献)

    要点 容易想到排序,然后对于每个数: 人的惯性思维做法是:\(a[i]*(rank1的+rank2的+-)\).然而解法巧妙之处在于直接把所有的加和当成一个系数,然后先假装所有情况系数都是1,接着往上 ...

  3. HDU6446(树上、排列的贡献计算)

    关键点在于:全排列中,任意两点u.v相邻的次数一定是(n - 1)! * 2次,即一个常数(可以由高中数学知识计算,将这两个点捏一起然后全排列然后乘二:或者用n! / C(2, n)). 这之后就好算 ...

  4. 2019 ACM/ICPC 全国邀请赛(西安)J And And And (树DP+贡献计算)

    Then n - 1n−1 lines follow. ii-th line contains two integers f_{a_i}(1 \le f_{a_i} < i)fai​​(1≤fa ...

  5. Codeforces 1119D(差分)

    题面 传送门 分析 先考虑\(O(nk)\)的做法,先按s从小到大排序,每个串的数显然形成了n个连续区间\([s_i+l,s_i+r]\),且这些区间的左端点升序排列,然后把区间合并就可以知道有多少个 ...

  6. Codeforces 1183H DP 计算子序列数目

    题意及思路:https://blog.csdn.net/mmk27_word/article/details/93999633 第一次见这种DP,有点像退背包的思想,如果发现有可能因为字母相同和前面算 ...

  7. CodeForces 1119D(差分+前缀和+二分)

    题意:给你一个数组,数组每次每个数都+1,有q次查询每一查询+L到+R中出现的所有不重复的数字个数. +L到+R其实就相当于是0到+(R-L+1) 感觉自己写的好啰嗦,直接上代码加注释: 1 #inc ...

  8. Codeforces 1060E(思维+贡献法)

    https://codeforces.com/contest/1060/problem/E 题意 给一颗树,在原始的图中假如两个点连向同一个点,这两个点之间就可以连一条边,定义两点之间的长度为两点之间 ...

  9. Codeforces Round #553 (Div. 2) E 贡献

    https://codeforces.com/contest/1151/problem/E 题意 一条长n的链,每个点上有值\(a[i]\),定义\(f(l,r)\)为该区间的\(值\)所代表的点留下 ...

随机推荐

  1. NOIP2010_T4_引水入城 bfs+贪心

    在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个 N 行 M 列的矩形,如上图所示,其中每个格子都代表一座城 市,每座城市都有一个海拔高度.为了使 ...

  2. HTTP1.0 与HTTP2.0的区别

    一.多路复用 HTTP2.0 使用了多路复用技术,做到同一个连接并发处理多个请求,而且并发请求的数量比HTTP1.1大了好几个数量级. 二.数据压缩 HTTP1.1不支持header数据压缩,HTTP ...

  3. Codeforces Round #402 (Div. 2) D String Game —— 二分法

    D. String Game time limit per test 2 seconds memory limit per test 512 megabytes input standard inpu ...

  4. yum的配置文件yum.conf详解

    说明:经过网上抄袭和自己的总结加实验,非常详细,可留作参考. yum的配置一般有两种方式:   一种是直接配置/etc目录下的yum.conf文件, 另外一种是在/etc/yum.repos.d目录下 ...

  5. iOS description

    description:重写对象的这个方法,会在打印的时候显示出自定义的description中的内容debugDescription:方法是在开发者在调试器中以控制台命令打印对象时才调用的. 在NS ...

  6. Android View中滚动相关

    方法   scrollTo: (内容的左上角)达到某个地点 scrollBy: 根据当前位置,再移动多少 属性:   mScrollX, 以下是文档解释   The offset, in pixels ...

  7. css 鼠标移入边框填充效果

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. cowboy中分布式节点通信

    项目开发中,web前端节点需要与远端的聊天服节点通信.聊天服使用了otp,但我对otp下的分布式通信不太清楚,造成了一些问题. 1)首先是cowboy节点的命名.具体参数是配置在工程目录rel下的vm ...

  9. HihoCoder 1488 : 排队接水(莫队+树状数组)

    描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...

  10. HihoCoder1470 : 公平的游戏

    描述 有一些人在玩一个游戏.游戏的舞台发生在一个 n 个点的树上. 这个游戏分为很多轮,每一轮都有一些玩家参与,每个玩家都会降落在一条给定的边上(不同玩家的边不同).之后这 n 个点上都会随机出现一个 ...