# Multi-class (Nonlinear) SVM Example
#
# This function wll illustrate how to
# implement the gaussian kernel with
# multiple classes on the iris dataset.
#
# Gaussian Kernel:
# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)
#
# X : (Sepal Length, Petal Width)
# Y: (I. setosa, I. virginica, I. versicolor) (3 classes)
#
# Basic idea: introduce an extra dimension to do
# one vs all classification.
#
# The prediction of a point will be the category with
# the largest margin or distance to boundary. import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() # Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals1 = np.array([1 if y == 0 else -1 for y in iris.target])
y_vals2 = np.array([1 if y == 1 else -1 for y in iris.target])
y_vals3 = np.array([1 if y == 2 else -1 for y in iris.target])
y_vals = np.array([y_vals1, y_vals2, y_vals3])
class1_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 0]
class1_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 0]
class2_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 1]
class2_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 1]
class3_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 2]
class3_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 2] # Declare batch size
batch_size = 50 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[3, None], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32) # Create variables for svm
b = tf.Variable(tf.random_normal(shape=[3, batch_size])) # Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1, 1])
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists))) # Declare function to do reshape/batch multiplication
def reshape_matmul(mat, _size):
v1 = tf.expand_dims(mat, 1)
v2 = tf.reshape(v1, [3, _size, 1])
return tf.matmul(v2, v1) # Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = reshape_matmul(y_target, batch_size) second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)), [1, 2])
loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term))) # Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist))) prediction_output = tf.matmul(tf.multiply(y_target, b), pred_kernel)
prediction = tf.argmax(prediction_output - tf.expand_dims(tf.reduce_mean(prediction_output, 1), 1), 0)
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target, 0)), tf.float32)) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss) # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Training loop
loss_vec = []
batch_accuracy = []
for i in range(100):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = y_vals[:, rand_index]
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp) if (i + 1) % 25 == 0:
print('Step #' + str(i+1))
print('Loss = ' + str(temp_loss)) # Create a mesh to plot points in
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')
plt.plot(class3_x, class3_y, 'gv', label='I. virginica')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show() # Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show() # Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show() # Evaluations on new/unseen data

tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)的更多相关文章

  1. tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...

  2. SVM原理以及Tensorflow 实现SVM分类(附代码)

    1.1. SVM介绍 1.2. 工作原理 1.2.1. 几何间隔和函数间隔 1.2.2. 最大化间隔 - 1.2.2.0.0.1. \(L( {x}^*)\)对$ {x}^*$求导为0 - 1.2.2 ...

  3. 用 TensorFlow 实现 SVM 分类问题

    这篇文章解释了底部链接的代码. 问题描述  如上图所示,有一些点位于单位正方形内,并做好了标记.要求找到一条线,作为分类的标准.这些点的数据在 inearly_separable_data.csv ...

  4. tensorflow学习之(九)classification 分类问题之分类手写数字0-9

    #classification 分类问题 #例子 分类手写数字0-9 import tensorflow as tf from tensorflow.examples.tutorials.mnist ...

  5. Magento架构师的笔记-----Magento显示当前目录的父分类和子分类的分类名

    在Magento目录的分类页面里,希望在左侧导航获取到父分类和子分类,可以用以下方法:打开app/your_package/your_themes/template/catalog/navigatio ...

  6. destoon实现调用当前栏目分类及子分类和三级分类的方法

    调用当前栏目分类及子分类和三级分类是程序设计里常用的方法,本文就来详细讲述destoon实现调用当前栏目分类及子分类和三级分类的方法.具体操作如下: 在destoon中提供了如下的调用语句: 一级分类 ...

  7. ML.NET 示例:多类分类之鸢尾花分类

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)

    1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...

  9. ML.NET 示例:多类分类之问题分类

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

随机推荐

  1. nginx的优点

    Linux.MySQL.PHP这些框架的优点之前已经介绍过,LNMP和LAMP不同的一点就是Web服务器Nginx,那么Nginx相比Apache有什么优点呢? Nginx是一个小巧而高效的Linux ...

  2. 【LeetCode】Partition List ——链表排序问题

    [题目] Given a linked list and a value x, partition it such that all nodes less than x come before nod ...

  3. HDU 3657 Game(取数 最小割)经典

    Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  4. apue学习笔记(第十二章 线程控制)

    本章将讲解控制线程行为方面的详细内容,而前面的章节中使用的都是它们的默认行为 线程属性 pthread接口允许我们通过设置每个对象关联的不同属性来细调线程和同步对象的行为.管理这些属性的函数都遵循相同 ...

  5. srm 541

    资瓷点这里阅读该文章O_o 250 Solution 水题,最暴力的方法枚举就可以 Code #include <bits/stdc++.h> using namespace std; # ...

  6. vscode Js 插件 Jshint 的配置

    vscode这款编辑器让人用起来很舒服,但是刚刚入手的童鞋可能会对其插件的安装产生一些恐惧,虽然vscode提供了插件的搜索和安装,但是其中一些插件是需要一些软件或者包之类的东西做支撑的,并不是在vs ...

  7. PHP通过prepare执行查询取得数据

    可以用来防止sql注入 <?php $pdo=new PDO("mysql:host=localhost;dbname=itest", 'root',''); //先构建查询 ...

  8. Azure、数据、AI开发工具

    Azure.数据.AI开发工具 在今天召开的 Connect(); 2017 开发者大会上,微软宣布了 Azure.数据.AI 开发工具的内容.这是第一天的 Connect(); 2017 的主题演讲 ...

  9. Docker入门系列8

    commit docker commit -m "Added json gem" -a "Docker Newbee" 0b2616b0e5a8 ouruser ...

  10. 目标跟踪之粒子滤波---Opencv实现粒子滤波算法

    目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...