题目链接:https://vjudge.net/problem/HDU-4965

Fast Matrix Calculation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2057    Accepted Submission(s): 954

Problem Description
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

 
Input
The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

 
Output
For each case, output the sum of all the elements in M’ in a line.
 
Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
 
Sample Output
14
56
 
Author
SYSU
 
Source

题意:

A为矩阵n*k,B为矩阵k*n,其中n<=1e3, k<=6。求 (A*B)^(n*n) 矩阵中所有项模6之和。

题解:

1.如果先计算 A*B的矩阵,然后再快速幂,那么矩阵最大可达:1e3*1e3,计算量是十分庞大的。

2. (A*B)^(n*n) = A*B*A*B*A*B*A*B……*A*B = A*(B*A)^(n*n-1)*B,其中B*A最大只为6*6,因而可先用矩阵快速幂算出(B*A)^(n*n-1),然后再计算A*(B*A)^(n*n-1)*B。

原理:矩阵乘法虽然不满足交换律,但是乘法的执行顺序却可以任意

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1000000007;
const int MAXN = 1e6+; const int MOD = ;
const int Size = ;
struct MA
{
int mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int a[][], b[][], c[][], M1[][], M2[][];
int main()
{
int n, k;
while(scanf("%d%d", &n,&k) &&(n||k))
{
memset(a, , sizeof(a));
memset(b, , sizeof(b));
memset(c, , sizeof(c)); for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
scanf("%d", &a[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<n; j++)
scanf("%d", &b[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<k; j++)
for(int t = ; t<n; t++)
c[i][j] += b[i][t]*a[t][j]%MOD, c[i][j] %= MOD; MA s;
memcpy(s.mat, c, sizeof(s.mat));
s = qpow(s, n*n-);
memcpy(c, s.mat, sizeof(c)); memset(M1, , sizeof(M1));
for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
for(int t = ; t<k; t++)
M1[i][j] += a[i][t]*c[t][j], M1[i][j] %= MOD; memset(M2, , sizeof(M2));
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
for(int t = ; t<k; t++)
M2[i][j] += M1[i][t]*b[t][j], M2[i][j] %= MOD; int ans = ;
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
ans += M2[i][j]; printf("%d\n", ans);
}
}

HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂的更多相关文章

  1. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  2. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  3. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  4. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  5. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  6. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  7. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  8. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  9. hdu 5607 graph (矩阵乘法快速幂)

    考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...

随机推荐

  1. 最简单的window下使用Jenkins来做自动化部署的教程

    今天我们来说一下,如何使用Jenkins+powershell脚本,将我们的.NET CORE的脚本部署到对应的服务器上. 这里我们使用的源码管理工具是TFS.虽然源码管理器比较老旧,但是原理都差不多 ...

  2. spring ConfigurableListableBeanFactory 接口

    接口继承关系如上图. ConfigurableListableBeanFactory具体: 1.2个忽略自动装配的的方法. 2.1个注册一个可分解依赖的方法. 3.1个判断指定的Bean是否有资格作为 ...

  3. 快速构造FFT/NTT

    @(学习笔记)[FFT, NTT] 问题概述 给出两个次数为\(n\)的多项式\(A\)和\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[ ...

  4. 第四章——SQLServer2008-2012资源及性能监控(1)专家

    http://blog.csdn.net/dba_huangzj/article/details/8614817

  5. KVC技巧二则

    说两个与KVC相关的技巧. 1.KVC与字典 有时候我们需要取出嵌套字典中的某个键的值.例如某个嵌套字典: NSDictionary *dict = @{@"subDict":@{ ...

  6. android studio C/C++ jni 编写以及调试方法

    原文路径: http://blog.sina.com.cn/s/blog_ad64b8200102vnxl.html 目录 开发环境 2 编写hello_jni程序 2 运行结果 10 调试程序 10 ...

  7. DIV浮动IE文本产生3象素的bug

    描写叙述:DIV浮动IE文本产生3象素的bug    左边对象浮动.右边採用外补丁的左边距来定位,右边对象(div)会离左边有3px的间距 复现:在开发者工具里把文本模式设置了杂项后会出现3像素的bu ...

  8. PHP如何学习?

    PHP 的学习,可以归纳为三个类型:      语言的基础语法学习,这些是 ifelse, while, switch, class, function, trait 等:  内置函数/类学习,这 ...

  9. 整合Hibernate3.x

    As of Spring 3.0, Spring requires Hibernate 3.2 or later. Hibernate 3和Hibernate 4有一些区别,所以对于spring而已, ...

  10. mysql用户修改登录密码及授予用户远程登录权限

    一.修改用户登录密码: mysql> show databases;ERROR 1820 (HY000): You must SET PASSWORD before executing this ...