题目链接:https://vjudge.net/problem/HDU-4965

Fast Matrix Calculation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2057    Accepted Submission(s): 954

Problem Description
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

 
Input
The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

 
Output
For each case, output the sum of all the elements in M’ in a line.
 
Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
 
Sample Output
14
56
 
Author
SYSU
 
Source

题意:

A为矩阵n*k,B为矩阵k*n,其中n<=1e3, k<=6。求 (A*B)^(n*n) 矩阵中所有项模6之和。

题解:

1.如果先计算 A*B的矩阵,然后再快速幂,那么矩阵最大可达:1e3*1e3,计算量是十分庞大的。

2. (A*B)^(n*n) = A*B*A*B*A*B*A*B……*A*B = A*(B*A)^(n*n-1)*B,其中B*A最大只为6*6,因而可先用矩阵快速幂算出(B*A)^(n*n-1),然后再计算A*(B*A)^(n*n-1)*B。

原理:矩阵乘法虽然不满足交换律,但是乘法的执行顺序却可以任意

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1000000007;
const int MAXN = 1e6+; const int MOD = ;
const int Size = ;
struct MA
{
int mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int a[][], b[][], c[][], M1[][], M2[][];
int main()
{
int n, k;
while(scanf("%d%d", &n,&k) &&(n||k))
{
memset(a, , sizeof(a));
memset(b, , sizeof(b));
memset(c, , sizeof(c)); for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
scanf("%d", &a[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<n; j++)
scanf("%d", &b[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<k; j++)
for(int t = ; t<n; t++)
c[i][j] += b[i][t]*a[t][j]%MOD, c[i][j] %= MOD; MA s;
memcpy(s.mat, c, sizeof(s.mat));
s = qpow(s, n*n-);
memcpy(c, s.mat, sizeof(c)); memset(M1, , sizeof(M1));
for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
for(int t = ; t<k; t++)
M1[i][j] += a[i][t]*c[t][j], M1[i][j] %= MOD; memset(M2, , sizeof(M2));
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
for(int t = ; t<k; t++)
M2[i][j] += M1[i][t]*b[t][j], M2[i][j] %= MOD; int ans = ;
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
ans += M2[i][j]; printf("%d\n", ans);
}
}

HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂的更多相关文章

  1. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  2. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  3. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  4. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  5. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  6. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  7. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  8. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  9. hdu 5607 graph (矩阵乘法快速幂)

    考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...

随机推荐

  1. 透明代理Transparent Proxy

    透明代理Transparent Proxy   透明代理Transparent Proxy类似于普通代理,它可以使得处于局域网的主机直接访问外网.但不同之处,它不需要客户端进行任何设置.这样,客户端误 ...

  2. Windows7/8/10中无法识别USB设备的问题解决

    1.打开控制面板 [Win+X]->[控制面板] 2.打开设备管理器 首先将面板切换为[小图标] 3.右键卸载“大容量设备”或者“磁盘管理器”的驱动,再重新刷新安装上去

  3. Css实现一个菜单导航

    提要:使用大div定位设置为relative,子div设置为absolute实现菜单下拉 实现代码: <!DOCTYPE html> <html lang="en" ...

  4. nodeJS一些事儿

    node-webkit:开发桌面+WEB混合型应用的神器[大漠穷秋] 展望未来 其实这条路老早就有人在走 网上有很多人在争论,未来究竟是原生的应用会胜出,还是WEB APP会胜出,实际上这两者并不是你 ...

  5. Solidworks安装完成提示failed to load slderresu.dll怎么办

    安装完成出现下面的一系列错误提示   进入到语言包,重新安装中文语言包即可   可以正常打开和运行了                  

  6. sql 表的部分字段查找 的结果集

    传统sql从多个对象中获得的list<Object> ,可以这样处理(利用Map)  List list = query.getList(sql);  //封装成BB类型  List< ...

  7. linux遍历目录源代码

    <pre code_snippet_id="1622396" snippet_file_name="blog_20160324_1_744516" nam ...

  8. 前言(CSDN也有Markdown了,好开森)

    实战出精华 在具体的C++网络编程中提升你的逼格 John Torjo Boost.Asio C++ 网络编程 Copyright © 2013 Packt Publishing 关于作者 做为一名权 ...

  9. python(38)- 网络编程socket

    一 客户端/服务器架构 即C/S架构,包括 1.硬件C/S架构(打印机) 2.软件C/S架构(web服务) 美好的愿望: 最常用的软件服务器是 Web 服务器.一台机器里放一些网页或 Web 应用程序 ...

  10. 关于Swiper(概念)

    Swiper 是一款免费以及轻量级的移动设备触控滑块的js框架,使用硬件加速过渡(如果该设备支持的话). 主要使用于移动端的网站.移动web apps,native apps和hybrid apps. ...