题目链接:https://vjudge.net/problem/HDU-4965

Fast Matrix Calculation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2057    Accepted Submission(s): 954

Problem Description
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

 
Input
The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

 
Output
For each case, output the sum of all the elements in M’ in a line.
 
Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
 
Sample Output
14
56
 
Author
SYSU
 
Source

题意:

A为矩阵n*k,B为矩阵k*n,其中n<=1e3, k<=6。求 (A*B)^(n*n) 矩阵中所有项模6之和。

题解:

1.如果先计算 A*B的矩阵,然后再快速幂,那么矩阵最大可达:1e3*1e3,计算量是十分庞大的。

2. (A*B)^(n*n) = A*B*A*B*A*B*A*B……*A*B = A*(B*A)^(n*n-1)*B,其中B*A最大只为6*6,因而可先用矩阵快速幂算出(B*A)^(n*n-1),然后再计算A*(B*A)^(n*n-1)*B。

原理:矩阵乘法虽然不满足交换律,但是乘法的执行顺序却可以任意

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1000000007;
const int MAXN = 1e6+; const int MOD = ;
const int Size = ;
struct MA
{
int mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int a[][], b[][], c[][], M1[][], M2[][];
int main()
{
int n, k;
while(scanf("%d%d", &n,&k) &&(n||k))
{
memset(a, , sizeof(a));
memset(b, , sizeof(b));
memset(c, , sizeof(c)); for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
scanf("%d", &a[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<n; j++)
scanf("%d", &b[i][j]); for(int i = ; i<k; i++)
for(int j = ; j<k; j++)
for(int t = ; t<n; t++)
c[i][j] += b[i][t]*a[t][j]%MOD, c[i][j] %= MOD; MA s;
memcpy(s.mat, c, sizeof(s.mat));
s = qpow(s, n*n-);
memcpy(c, s.mat, sizeof(c)); memset(M1, , sizeof(M1));
for(int i = ; i<n; i++)
for(int j = ; j<k; j++)
for(int t = ; t<k; t++)
M1[i][j] += a[i][t]*c[t][j], M1[i][j] %= MOD; memset(M2, , sizeof(M2));
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
for(int t = ; t<k; t++)
M2[i][j] += M1[i][t]*b[t][j], M2[i][j] %= MOD; int ans = ;
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
ans += M2[i][j]; printf("%d\n", ans);
}
}

HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂的更多相关文章

  1. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  2. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  3. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  4. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  5. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  6. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  7. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  8. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  9. hdu 5607 graph (矩阵乘法快速幂)

    考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...

随机推荐

  1. redis-bitmap 命令使用的一些帖子

    https://segmentfault.com/a/1190000009841792?utm_source=tag-newest http://blog.csdn.net/lglgsy456/art ...

  2. Ubuntu 16.04下使用Wine安装Xshell 4和Xftp 4

    说明: 1.使用的Wine版本是深度出品(Deepin),已经精简了很多没用的配置,使启动能非常快,占用资源小. 2.由于Xshell 5的C++库无法在这个Wine版本运行,即使升级官方原版的2+版 ...

  3. Java创建和解析Json数据方法(四)——json-lib包的使用

    (四)json-lib包的使用         既然json-lib包比org.json包重量级,那么json-lib包肯定有很多org.json包没有的类和方法,这篇笔记简单记录json-lib包中 ...

  4. CentOS 笔记

    对安装CentOS安装使用过程中的问题做一个笔记,第一次安装,安装的是7.0版本,最小化安装. 安装环境 :Windows 2012 R2 Standard,Hyper-V Virstual Mach ...

  5. vuejs npm chromedriver 报错

    vuejs npm chromedriver 报错   # 全局安装 vue-cli$ npm install -g vue-cli# 创建一个基于 "webpack" 模板的新项 ...

  6. JS里面的call, apply以及bind

    参考了这篇文章:http://www.tuicool.com/articles/EVF3Eb 给几个例子 function add(a,b) { alert(a+b); } function sub( ...

  7. CString和string头文件

    在使用了MFC库的工程中CString可以直接使用,在没有使用MFC库的工程中加入#include <atlstr.h> 要使用STL里的string,要加入#include <st ...

  8. Linux(centos 6.5) 调用java脚本以及定时运行的脚本实例及配置文件具体解释

    Linux(centos 6.5) 调用java脚本以及定时运行的脚本实例 一.调用java程序脚本(默认已经搭建好了Java环境) 1.jdk 安装路径 /usr/jdk/jdk1.7/-- 2.j ...

  9. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

  10. API网关如何实现对服务下线实时感知

    上篇文章<Eureka 缓存机制>介绍了Eureka的缓存机制,相信大家对Eureka 有了进一步的了解,本文将详细介绍API网关如何实现服务下线的实时感知. 一.前言 在基于云的微服务应 ...