You can Solve a Geometry Problem too

                                        Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                        

Problem Description
Many
geometry(几何)problems were designed in the ACM/ICPC. And now, I also
prepare a geometry problem for this final exam. According to the
experience of many ACMers, geometry problems are always much trouble,
but this problem is very easy, after all we are now attending an exam,
not a contest :)
Give you N (1<=N<=100) segments(线段), please
output the number of all intersections(交点). You should count repeatedly
if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

 
Input
Input
contains multiple test cases. Each test case contains a integer N
(1=N<=100) in a line first, and then N lines follow. Each line
describes one segment with four float values x1, y1, x2, y2 which are
coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
 
Sample Output
1
3
 
Author
lcy
 
 
直接O(N^2)判断两线段是否相交即可。
 
判断线段是否相交的模板:
 
 inline double CrossProduct(node a, node b, node c){
return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
}
//Calculate the crossproduct inline bool SegX(node p1, node p2, node p3, node p4){
double d1 = CrossProduct(p3, p4, p1);
double d2 = CrossProduct(p3, p4, p2);
double d3 = CrossProduct(p1, p2, p3);
double d4 = CrossProduct(p1, p2, p4);
return (d1 * d2 <= && d3 * d4 <= );
}
//Judge whether the line segments intersact
 那么直接套用一下就好了。
 
 #include <bits/stdc++.h>

 using namespace std;

 struct node{
double x, y;
} pa[], pb[]; int n, num; inline double CrossProduct(node a, node b, node c){
return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
} inline bool SegX(node p1, node p2, node p3, node p4){
double d1 = CrossProduct(p3, p4, p1);
double d2 = CrossProduct(p3, p4, p2);
double d3 = CrossProduct(p1, p2, p3);
double d4 = CrossProduct(p1, p2, p4);
return (d1 * d2 <= && d3 * d4 <= );
} int main(){ while (~scanf("%d", &n), n){
num = ;
for (int i = ; i <= n; ++i) scanf("%lf%lf%lf%lf", &pa[i].x, &pa[i].y, &pb[i].x, &pb[i].y);
for (int i = ; i <= n - ; ++i)
for (int j = i + ; j <= n; ++j)
if (SegX(pa[i], pb[i], pa[j], pb[j])) ++num;
printf("%d\n", num);
} return ; }

HDU1086 You can Solve a Geometry Problem too(计算几何)的更多相关文章

  1. (叉积,线段判交)HDU1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  2. hdu_1086 You can Solve a Geometry Problem too(计算几何)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 分析:简单计算几何题,相交判断直接用模板即可. 思路:将第k条直线与前面k-1条直线进行相交判断,因为题目 ...

  3. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  4. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  5. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  7. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  8. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  9. You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...

随机推荐

  1. [Uva623]500!(高精)

    Description 求N! \(N \leq 1000\) Sample Input 10 30 50 100 Sample Output 10! 3628800 30! 265252859812 ...

  2. Diycode开源项目 搭建可以具有下拉刷新和上拉加载的Fragment

    1.效果预览 1.1.这个首页就是一个Fragment碎片,本文讲述的就是这个碎片的搭建方式. 下拉会有一个旋转的刷新圈,上拉会刷新数据. 1.2.整体结构 首先底层的是BaseFragment 然后 ...

  3. P3402 最长公共子序列(nlogn)

    P3402 最长公共子序列 题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子 ...

  4. Unable to execute dex: Multiple dex files define Lcom/myapp/R$array;

    Unable to execute dex: Multiple dex files define Lcom/myapp/R$array; 我这个问题最后解决方式是,吧工程里面用同一个v4包. 很明显, ...

  5. linux下编译运行TIGL Viewer步骤

    linux下编译运行TIGL Viewer步骤(仅为了正确编译安装的话直接跳到步骤3) 1. linux发行版选择:由于linux发行版众多,不同版本包含的库版本可能存在差别,因此需要选择正确的版本. ...

  6. IOS开发学习笔记007-数据结构

    目录: 1.全局变量和局部变量 2.结构体 3.结构体数组 4.结构体做函数参数 5.结构体指针 6.枚举 7.总结 一.全局变量和局部变量 全局变量和局部变量的区别 1. 全局变量,再函数外定义的变 ...

  7. uReplicator实现分析

    MirrorMakerWorker分析 是整个同步机制的主入口,主要组织的逻辑有: 配置数据的传入与处理,ConsumerConfig对象的构建 度量对象的准备,定时上报的度量数据收集线程的定义与启动 ...

  8. PHP PDO fetch() 详解

    环境:(PHP 5 >= 5.1.0, PHP 7, PECL pdo >= 0.1.0) PDOStatement::fetch — 从结果集中获取下一行 说明 PDOStatement ...

  9. tinyipa make

    参考:http://tinycorelinux.net/ Ironic Python Agent repo还提供了一组脚本,用于在imagebuild / tinyipa文件夹下构建一个基于Linux ...

  10. Leetcode 498.对角线遍历

    对角线遍历 给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示. 示例: 输入: [ [ 1, 2, 3 ], [ 4, 5, ...