The Best Path

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 18    Accepted Submission(s): 8

Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M
rivers linking these lakes. Alice wants to start her trip from one
lake, and enjoys the landscape by boat. That means she need to set up a
path which go through every river exactly once. In addition, Alice has a
specific number (a1,a2,...,an) for each lake. If the path she finds is P0→P1→...→Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000), as described above. The i-th line of the next N lines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.

 
Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
 
Sample Input
2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4
 
Sample Output
2
Impossible
 
Source
题意:有 n个湖泊m条河流,现在 Alice 要从某点出发走遍所有河流一次且仅一次,问Alice走过的点的异或最大值是多少?
题解:这题每条边要走且仅走一次,那么这明显就是个欧拉(回)路,先判断一下连通分量的个数,如果有多个就是 "Impossible",然后判断度为奇数的点的个数 ,如果不是0个或者2个,输出"Impossbie" ,如果度为奇数个数为 0 个,那么就是欧拉回路,那么就从度不为0且degree/2为奇数的每个点做异或,得到一个结果,得到的结果然后分别与每个点做异或,选择最大的.如果度为奇数的点是 2 个,那么每个点走的次数便是确定的,如果是度是偶数,那么degree/2为奇数的点参与异或,如果度为奇数,那么当(degree+1)/2为奇数时,此点参与异或。
附欧拉路的定义:
判定该图是否为Euler图,包括有向欧拉通路,有向欧拉回路,无向欧拉通路,无向欧拉回路:

有向欧拉通路:起点:出度-入度=1,终点:入度-出度=1,其它点:入度==出度

有向欧拉回路:所有点:入度==出度

无向欧拉通路:仅有两个奇度点

无向欧拉回路:无奇度点

 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = ;
int a[N];
int father[N];
int degree[N];
int _find(int x)
{
if(x!=father[x]) father[x] = _find(father[x]);
return father[x];
}
void Union(int a,int b)
{
int x = _find(a);
int y = _find(b);
if(x==y) return ;
father[x] = y;
}
void init(int n)
{
for(int i=; i<=n; i++)
{
father[i] = i;
degree[i] = ;
}
}
int main()
{
int tcase,n,m;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d",&n,&m);
init(n);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(int i=; i<=m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
degree[u]++;
degree[v]++;
Union(u,v);
}
int ans = ;
for(int i=; i<=n; i++)
{
if(degree[i]>)
{
if(_find(i)==i) ans++;
}
}
///连通分量个数
if(ans>)
{
printf("Impossible\n");
continue;
}
ans = ;
for(int i=; i<=n; i++)
{
if(degree[i]%!=) ans++;
}
///判断是否为欧拉路
if(ans!=&&ans!=)
{
printf("Impossible\n");
continue;
}
LL res = ;
if(ans==)
{
for(int i=; i<=n; i++)
{
int K = degree[i]/;
if(degree[i]!=&&K%==){
res = res^a[i];
}
}
LL MAX = -;
for(int i=; i<=n; i++)
{
int K = degree[i]/;
if(degree[i]!=){
MAX = max(MAX,res^a[i]);
}
}
res = MAX;
}
else
{
for(int i=; i<=n; i++)
{
int K = degree[i]/;
if(degree[i]%==&&K%==)
{
res = res^a[i];
}
if(degree[i]%==)
{
K = (degree[i]+)/;
if(K%==)
res = res^a[i];
}
}
}
printf("%lld\n",res);
}
return ;
}
 
 

hdu 5833(欧拉路)的更多相关文章

  1. HDU 5883 The Best Path (欧拉路或者欧拉回路)

    题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...

  2. 欧拉路&&欧拉回路 概念及其练习

    欧拉路: 如果给定无孤立结点图G,若存在一条路,经过图中每边一次且仅一次,这条路称为欧拉路: 如果给定无孤立结点图G,若存在一条回路,经过图中每边一次且仅一次,那么该回路称为欧拉回路. 存在欧拉回路的 ...

  3. The Best Path(HDU5883)[欧拉路]2016青岛online

    题库链接:http://acm.hdu.edu.cn/showproblem.php?pid=5883 欧拉回路裸题,第一次接触欧拉路的我是真的长见识了^-^ 懂了欧拉路这道题就是没什么问题了,欧拉路 ...

  4. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  5. POJ1386Play on Words[有向图欧拉路]

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11846   Accepted: 4050 De ...

  6. hdu1161 欧拉路

    欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...

  7. UVA10054The Necklace (打印欧拉路)

    题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...

  8. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  9. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

随机推荐

  1. BZOJ 4864: [BeiJing 2017 Wc]神秘物质 解题报告

    4864: [BeiJing 2017 Wc]神秘物质 Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子. ...

  2. wireshark 根据域名筛选

    应该去掉引号

  3. mesos+marathon+zookeeper+docker

    http://mesosphere.com/docs/mesosphere/getting-started/single-node-install/ mesos-master --zk=zk://lo ...

  4. scp 从本地往线上传文件

    scp /home/wwwroot/default/tf_ment.sql root@IP:/home/wwwroot/default/

  5. 生存分析/Weibull Distribution韦布尔分布

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  6. CCD与CMOS的区别

    我们在购买相机或是摄像机时,都会看到使用CMOS镜头或是CCD镜头,那么CCD与CMOS是什么意思呢,CCD与CMOS的区别是什么?首先,让我们了解CCD与CMOS的意思. CCDCCD使用一种高感光 ...

  7. Vue.js和angular.js区别

    Vue.js:易学 简单 指令以v.xxx 一片HTML代码配合json,在new出来Vue,js实例 个人维护项目 适用于移动端 应用超越了angular angular.js:上手难 指令以ng. ...

  8. PHP提取链接批量下载

    2014年年初的时候,曾经受委托完成一个视频网站,那时最大的技术障碍是一个大视频比如500MB,在一个带宽环境不怎么快的服务器(比如1Mbps)上提供播放的问题. 这里会遇到两种情况,第一种情况是客户 ...

  9. python中拷贝对象的区别

    一.赋值.引用 在python中赋值语句总是建立对象的引用值,而不是复制对象.因此,python变量更像是指针,而不是数据存储区域 这点和大多数语音类似吧,比如C++.Java等 1.先看个例子: v ...

  10. Vue.js入门系列教程(一)

    基本的Vue代码结构 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...