【题意】给定n个点的有向带边权图,求0到n-1长度恰好为T的路径数。n<=10,T<=10^9,边权1<=wi<=9。

【算法】矩阵快速幂

【题解】这道题的边权全部为1时,有简化版:【BZOJ】1706: [usaco2007 Nov]relays 奶牛接力跑

这道题边权很小,将点x拆成9个点x1~x9,xi向xi+1连边。如果x到y的边权为k,则连边xk-y1。

然后就和奶牛题一样了。

【BZOJ】1297: [SCOI2009]迷路的更多相关文章

  1. BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )

    递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...

  2. [BZOJ 1297][SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1418  Solved: 1017[Submit][Status ...

  3. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  4. 1297: [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 652  Solved: 442[Submit][Status] ...

  5. 1297. [SCOI2009]迷路【矩阵乘法】

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  6. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  7. [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 993[Submit][Status] ...

  8. 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

    [BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...

  9. B20J_1297_[SCOI2009]迷路_矩阵乘法

    B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...

随机推荐

  1. Rsyslog的三种传输协议简要介绍

    rsyslog的三种传输协议 rsyslog 可以理解为多线程增强版的syslog. rsyslog提供了三种远程传输协议,分别是: 1. UDP 传输协议 基于传统UDP协议进行远程日志传输,也是传 ...

  2. CDN问题

    名称解释:正反向解析 主辅服务器 domain zone 记录:SOA.NS.A.CNAME.PRT.MX DNS配置文件中各字段作用,如TTL DNS端口号? TCP53和UDP53使用场合 Lin ...

  3. Qt多线程-总结QThread-QThreadPool-QtConcurrent

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt多线程-总结QThread-QThreadPool-QtConcurrent     本文 ...

  4. 小程序 坐标算距离 (copy)

      var EARTH_RADIUS = 6378137.0;    //单位M    var PI = Math.PI;        function getRad(d){        retu ...

  5. perf的统计模式: 突破口: x86_perf_event_update

    之前一直以为perf的统计模式也是通过中断出发来的,于是会在中断处理函数中做处理,但是如果perf是统计模式,那么perf的寄存器就不会是溢出的模式了,这个时候,就没有pmu的中断发生,所以很奇怪呢, ...

  6. jumpserver的安装部署

    废话不说直接安装 1:安装数据库 这里是提前安装,也可以不安装,在安装jumpserver主程序的时候,他会询问你是否安装 yum -y install ncurses-devel cmake ech ...

  7. 【计算机基础】当你在浏览器中输入Google.com并且按下回车之后发生了什么?

    本文转载自:https://github.com/skyline75489/what-happens-when-zh_CN#id9 按下"g"键 接下来的内容介绍了物理键盘和系统中 ...

  8. CF487E-Tourists

    题意 给出一个\(n\)个点\(m\)条边的无向图,给出每个点的初始点权,\(q\)次操作: 修改一个点的点权 询问两点间的所有路径中最小点权最小的路径上的最小点权 \(n,m,q\le 10^5,w ...

  9. C#非泛型集合类与泛型集合类的区别 (转)

    来自:http://blog.csdn.net/jiayanhui2877/article/details/7623845 C# 泛型集合之非泛型集合类与泛型集合类的对应: ArrayList对应Li ...

  10. 【刷题】BZOJ 4650 [Noi2016]优秀的拆分

    Description 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆分是优秀的.例如,对于字符串 aabaabaa,如果令 A ...