[SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串
Description
lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?
输入格式:输入数据是一行,包括2个数字n和m;
输出格式:输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数;
Solution
1.本题可看为使组成01串中任意前缀中1的个数比0多,而0和1的个数不等;
2.我们可以将0看做向上走,1看做向右走,求从原点走到(n,m)不越过y=x的不同方案数;
3.那么我们考虑卡特兰数通项公式的来源,本题解可化为总方案数-不可行方案数,不合法方案数即为触碰到y=x+1的方案数,即C(n+m,m)-C(n+m,m-1)= (n+m)!/(n+1)!m!(n-
m+1)%20100403;
4.用扩展欧几里得求模mod=20100403剩余系下分母的逆元,计算对应的ans即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const long long mod=20100403;
long long n,m,i,ans,j,k,q;
void exgcd(long long a,long long b,long long &gcd,long long &x,long long &y) //Çó³Ë·¨ÄæÔª
{
if(!b){
x=1;
y=0;
gcd=a;
return;
}
exgcd(b,a%b,gcd,y,x);
y-=x*(a/b);
return;
}
long long cul(long long a,long long b)
{
long long gcd,x,y;
exgcd(a,b,gcd,x,y);
if(gcd==1)return(x+b)%b;
}
int main()
{
scanf("%d%d",&n,&m);
j=n-m+1;
k=n+1;
for(i=n+1;i<=n+m;i++)j=(j%mod)*(i%mod)%mod;
for(i=2;i<=m;i++)k=(k%mod)*(i%mod)%mod;
q=cul(k,mod);
ans=j*q%mod;
printf("%d\n",ans);
return 0;
}
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html
[SCOI2010]生成字符串 题解(卡特兰数的扩展)的更多相关文章
- 【洛谷 P1641】 [SCOI2010]生成字符串(Catalan数)
题目链接 可以看成在坐标系中从\((0,0)\)用\(n+m\)步走到\((n+m,n-m)\)的方案数,只能向右上\((1)\)或者右下\((0)\)走,而且不能走到\(y=-1\)这条直线上. 不 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- [题解] [SCOI2010] 生成字符串
题面 题解 考虑到直接求合法方案不好求, 我们转化为用总方案减去不合法方案 总方案就是\(\binom{n+m}{m}\), 即在\(n+m\)个位置中放\(n\)个数 我们将初始的空序列看做\((0 ...
- 【[SCOI2010]生成字符串】
\(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
随机推荐
- 软工网络15团队作业4-DAY8
每日例会 昨天的工作. 张陈东芳:可导入部分类信息,继续尝试将所有信息导入: 吴敏烽:商品类的规范化编写: 周汉麟:界面的排版继续优化: 林振斌:按照浏览历史,次数等,继续优化商品类排序: 李智:研究 ...
- 转载:java程序调用内存的变化过程
前文知道了java程序运行时在内存中的大概分布,但是对于具体程序是如何运行的,看到一篇文章,直接转载过来. (一)不含静态变量的java程序运行时内存变化过程分析 代码: package oop; / ...
- 【HLSDK系列】HL引擎入门篇
如果你打算拿HL的源码(也就是HLSDK)来改出一个自己的游戏,那你就非常有必要理解一些HL引擎的工作方式. HL引擎分成两个部分,服务端和客户端.服务端管理所有玩家的状态和游戏规则,客户端负责显示U ...
- TCP的拥塞控制 (一)
拥塞控制不同于流量控制,拥塞控制是在拥塞发生时,发送方根据一定的反馈,主动调节自己的发送速率,以防止拥塞恶化的行为. 1. 网络拥塞 路由器是网络中的关键组件,其内部有一定量的缓冲区,用于缓存来不 ...
- "XX cannot be resolved to a type "eclipse报错及解决
好久都没有写博了,还记得自己准备考研,结果你会发现——你永远不知道,你将会走上哪个路. 长远的目标是好的,但有些时候身不由己也迫不得已!做好自己的当下就是好的. 不论搞什么,总会遇到各种各样的问题,以 ...
- Redis安装与配置Redis安装与配置
今天在使用Redis的时候遇到了一些问题,这个问题的解决,发现很多人使用Redis的时候没有一点安全意识.所以又重温了一下Redis,觉得应该写一下Redis的安全和配置. Redis安装与配置Red ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
- 【CF438E】The Child and Binary Tree(多项式运算,生成函数)
[CF438E]The Child and Binary Tree(多项式运算,生成函数) 题面 有一个大小为\(n\)的集合\(S\) 问所有点权都在集合中,并且点权之和分别为\([0,m]\)的二 ...
- BZOJ3524 & LOJ2432:[POI2014]代理商Couriers——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3524 https://loj.ac/problem/2432 给一个长度为n的序列a.1≤a[i] ...
- [pool www] user has not been defined
[02-Dec-2014 00:28:58] ALERT: [pool www] user has not been defined [02-Dec-2014 00:28:58] ERROR: fai ...