[SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串
Description
lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?
输入格式:输入数据是一行,包括2个数字n和m;
输出格式:输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数;
Solution
1.本题可看为使组成01串中任意前缀中1的个数比0多,而0和1的个数不等;
2.我们可以将0看做向上走,1看做向右走,求从原点走到(n,m)不越过y=x的不同方案数;
3.那么我们考虑卡特兰数通项公式的来源,本题解可化为总方案数-不可行方案数,不合法方案数即为触碰到y=x+1的方案数,即C(n+m,m)-C(n+m,m-1)= (n+m)!/(n+1)!m!(n-
m+1)%20100403;
4.用扩展欧几里得求模mod=20100403剩余系下分母的逆元,计算对应的ans即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const long long mod=20100403;
long long n,m,i,ans,j,k,q;
void exgcd(long long a,long long b,long long &gcd,long long &x,long long &y) //Çó³Ë·¨ÄæÔª
{
if(!b){
x=1;
y=0;
gcd=a;
return;
}
exgcd(b,a%b,gcd,y,x);
y-=x*(a/b);
return;
}
long long cul(long long a,long long b)
{
long long gcd,x,y;
exgcd(a,b,gcd,x,y);
if(gcd==1)return(x+b)%b;
}
int main()
{
scanf("%d%d",&n,&m);
j=n-m+1;
k=n+1;
for(i=n+1;i<=n+m;i++)j=(j%mod)*(i%mod)%mod;
for(i=2;i<=m;i++)k=(k%mod)*(i%mod)%mod;
q=cul(k,mod);
ans=j*q%mod;
printf("%d\n",ans);
return 0;
}
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html
[SCOI2010]生成字符串 题解(卡特兰数的扩展)的更多相关文章
- 【洛谷 P1641】 [SCOI2010]生成字符串(Catalan数)
题目链接 可以看成在坐标系中从\((0,0)\)用\(n+m\)步走到\((n+m,n-m)\)的方案数,只能向右上\((1)\)或者右下\((0)\)走,而且不能走到\(y=-1\)这条直线上. 不 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- [题解] [SCOI2010] 生成字符串
题面 题解 考虑到直接求合法方案不好求, 我们转化为用总方案减去不合法方案 总方案就是\(\binom{n+m}{m}\), 即在\(n+m\)个位置中放\(n\)个数 我们将初始的空序列看做\((0 ...
- 【[SCOI2010]生成字符串】
\(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
随机推荐
- Windows下IntelliJ IDEA中调试Spark Standalone
参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.c ...
- 配置ip,使你的虚拟机可以被别人访问到,搭建服务器必备
我么一般配置虚拟机的时候,我们总是喜欢使用虚拟网段,但是这样别人有可能ping不通我的虚拟机的. 若是我们想要别人ping我们的ip ,则我们要跟改以下几个操作: 在我们的网络源的源模式中,你若是想在 ...
- 对IT行业的看法和对软件工程的理解
现在社会上IT行业的人才需求越来越大,而作为一个学软件工程的大学生,我认为IT行业是一个前景十分强大的发展方向,而且现在的社会越来越信息化,未来的生活中,电脑肯定是不可缺少的,所以我认为IT行业这是一 ...
- 【week12】psp
psp 项目 内容 开始时间 结束时间 被打断 净时间 12月2日 写博客 对各小组评价 11:20 12:05 0 45 写博客 final评价1 23:40 23:57 0 17 12月5日 看论 ...
- C++变量内存分配及类型修饰符
前言 了解C++程序内存分配,有助于深刻理解变量的初始化值以及其生存周期.另外,变量类型修饰符也会影响到变量的初始化值及其生存周期.掌握了不同类型变量的初始化值及其生存周期,能够让我们设计程序时定义变 ...
- c# AOP 文章地址
AOP:aspect oriented programing 面向切面编程.大概就是在程序的指定地方,可以做拦截然后插入执行指定的一段程序,这种模式在写日志,权限检查等操作很有用,这些操作都是固定的处 ...
- postman优缺点
postman优缺点分析 优点:门槛低,上手快 优点: 脚本语言是js 优点:自带各种代码模块 优点:跨平台 优点: 免费版就已经非常强大了,支持http,https协议 优点:有命令行版本,newm ...
- 洛谷 P4585 [FJOI2015]火星商店问题 解题报告
P4585 [FJOI2015]火星商店问题 题目描述 火星上的一条商业街里按照商店的编号\(1,2,\dots,n\) ,依次排列着\(n\)个商店.商店里出售的琳琅满目的商品中,每种商品都用一个非 ...
- powershell网络钓鱼获取用户密码
1.powershell网络钓鱼脚本: https://raw.githubusercontent.com/enigma0x3/Invoke-LoginPrompt/master/Invoke-Log ...
- linux安全第二周学习总结
一.实验过程 cd LinuxKernel/linux-3.9.4 qemu -kernel arch/x86/boot/bzImage 然后cd mykernel 您可以看到qemu窗口输出的内容的 ...