题目链接:http://noi.openjudge.cn/ch0206/1759/

题解:

  奇怪……之前博客里的o(nlogn)标程在codevs和tyvj上都能AC,偏偏它这里不行

 #include<cstdio>
#define MAXN 1010
int n,a[MAXN],f[MAXN],ans;
inline int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
f[i]=;
}
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
if(a[i]>a[j]&&f[j]+>=f[i])f[i]=f[j]+;
for(int i=;i<=n;++i)ans=max(ans,f[i]);
printf("%d",ans);
return ;
}

openjudge-NOI 2.6-1759 最长上升子序列的更多相关文章

  1. 【noi 2.6_1808】最长公共子序列(DP)

    题意:给2个字符串求其最大公共子序列的长度.解法:这个和一般的状态定义有点不一样,f[i][j]表示 str 前i位和 str2 前j的最大公共子序列的长度,而不是选 str 的第i位和 str2 的 ...

  2. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  3. dp--最长上升子序列LIS

    1759:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对 ...

  4. OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence

    1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...

  5. 【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)

    题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include& ...

  6. POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]

    题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...

  7. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  8. 最长上升子序列&&最长不下降子序列

    百练2757: 题目描述: 对于给定的序列,求出最长上升子序列的长度. 题目链接:http://bailian.openjudge.cn/practice/2757 解题思路 一.动态规划 1. 找子 ...

  9. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. bzoj2383[CEOI2011] ballons

    题意 在一条数轴上从左向右有一些气球,每个气球一开始位于横坐标xi的位置,是半径为0的圆.现在开始从左向右给每个气球充气.被充气的气球的半径会不断变大,直到达到这个气球的半径上限Ri或者这个气球和之前 ...

  2. Ajax+Js局部刷新

    通过 AJAX,JavaScript 可使用 JavaScript 的 XMLHttpRequest 对象来直接与服务器进行通信.通过这个对象, JavaScript 可在不重载页面的情况与 Web ...

  3. NOI2013 矩阵游戏 【数论】

    题目描述 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i ...

  4. Zabbix3.4.5部署安装(二)

    一.部署环境 一)系统环境: [root@Node3 ~]# cat /etc/redhat-release //查看系统版本 CentOS Linux release (Core) [root@No ...

  5. HSTS的来龙去脉

    前言 安全经常说“云.管.端”,“管”指的是管道,传输过程中的安全.为了确保信息在网络传输层的安全,现在很多网站都开启了HTTPS,也就是HTTP+TLS,在传输过程中对信息进行加密.HTTPS使用了 ...

  6. 20135239 益西拉姆 linux内核分析 使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用

    https://drive.wps.cn/preview#l/759e32d65654419cb765da932cdf5cdc 本次直接在wps上写的,因为不能连同图片一起粘贴过来,一个一个粘比较费时 ...

  7. XSS/CSRF跨站攻击和防护方案

    Xss(Cross Site Scripting 跨站脚本攻击)/CSRF(Cross-site request forgery 跨站请求伪造),它与著名的SQL注入攻击类似,都是利用了Web页面的编 ...

  8. Yura

    Portal --> broken qwq Description ​  给你一个长度为\(n\)的序列\(a\)和一个正整数\(k\),求满足如下条件的区间\([l,r]\)的数量:\((\s ...

  9. cmakelist 定义字符串,替换到脚本中。

    cmake_minimum_required(VERSION 2.6 FATAL_ERROR) cmake_policy(VERSION 2.6) # . Project Name project(s ...

  10. C#调用GDI+1.1中的函数实现高斯模糊、USM锐化等经典效果。

    http://www.cnblogs.com/Imageshop/archive/2012/12/13/2815712.html 在GDI+1.1的版本中,MS加入不少新的特性,其中的特效类Effec ...