题目链接:http://noi.openjudge.cn/ch0206/1759/

题解:

  奇怪……之前博客里的o(nlogn)标程在codevs和tyvj上都能AC,偏偏它这里不行

 #include<cstdio>
#define MAXN 1010
int n,a[MAXN],f[MAXN],ans;
inline int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
f[i]=;
}
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
if(a[i]>a[j]&&f[j]+>=f[i])f[i]=f[j]+;
for(int i=;i<=n;++i)ans=max(ans,f[i]);
printf("%d",ans);
return ;
}

openjudge-NOI 2.6-1759 最长上升子序列的更多相关文章

  1. 【noi 2.6_1808】最长公共子序列(DP)

    题意:给2个字符串求其最大公共子序列的长度.解法:这个和一般的状态定义有点不一样,f[i][j]表示 str 前i位和 str2 前j的最大公共子序列的长度,而不是选 str 的第i位和 str2 的 ...

  2. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  3. dp--最长上升子序列LIS

    1759:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对 ...

  4. OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence

    1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...

  5. 【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)

    题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include& ...

  6. POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]

    题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...

  7. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  8. 最长上升子序列&&最长不下降子序列

    百练2757: 题目描述: 对于给定的序列,求出最长上升子序列的长度. 题目链接:http://bailian.openjudge.cn/practice/2757 解题思路 一.动态规划 1. 找子 ...

  9. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. 超链接提示效果jQuery+CSS+html

    我们知道浏览器自带了超链接提示, 只需要在超链接中加入 title 属性就可以了. <a href="#" title="吉大砍人案致1死1伤 受害者死前大喊他手里 ...

  2. What Is The Promiscuous Mode

    What Is The Promiscuous Mode? Some Network Interface Cards (NICs) may not allow network traffic afte ...

  3. 贪心(qwq)习题题解

    贪心(qwq)习题题解 SCOI 题解 [ SCOI2016 美味 ] 假设已经确定了前i位,那么答案ans一定属于一个区间. 从高位往低位贪心,每次区间查找是否存在使此位答案为1的值. 比如6位数确 ...

  4. 使用StoryBoard执行动画

    在WPF动画编程中,最常用的动画处理方式是DoubleAnimation动画,但是随着你的开发经验越来越多,你会发现,有时候使用这个动画类会很麻烦,因为这个动画是封闭动画,也就是说在动画的时间间隔内, ...

  5. 如何用Qt Python创建简单的桌面条形码应用

    Qt for Python可以快速跨平台的GUI应用.这篇文章分享下如何结合Dynamsoft Barcode Reader SDK来创建一个简单的读码应用. 安装Qt for Python 官方站点 ...

  6. 洛谷 [POI2007]BIU-Offices 解题报告

    [POI2007]BIU-Offices 题意 给定\(n(\le 100000)\)个点\(m(\le 2000000)\)条边的无向图\(G\),求这个图\(G\)补图的连通块个数. 一开始想了半 ...

  7. Qt实现截屏并保存(转载)

    原博地址:http://blog.csdn.net/qinchunwuhui/article/details/52869451?_t_t_t=0.28889142944202306 目前对应用实现截屏 ...

  8. TC规则

    633人阅读   TC规则涉及到 队列(QUEUE) 分类器(CLASS) 过滤器(FILTER),filter划分的标志位可用U32或iptables的set-mark来实现 ) 一般是" ...

  9. UVA-10375 数学

    UVA-10375 题意 : 输入p,q,r,s,求C(p,q)/C(r,s). p,q,r,s<=10000:结果不超过1e8 代码: //显然不能直接计算,考虑每个数都可以由若干个素数乘积得 ...

  10. 一元回归_R相关系数_多重检验

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...